Лазерный ускоритель. Лазерный луч раздвоили, а потом скрестили

Доктор физико-математических наук Валерий Быченков, главный научный сотрудник Физического института им. П. Н. Лебедева Российской академии наук.

Пожалуй, редкая область знаний может похвастаться таким бурным развитием, как лазерная наука и техника. Кто мог предположить, что созданный всего пятьдесят лет назад первый оптический квантовый генератор приведёт к цепной реакции идей по широкому использованию лазеров и сделает их незаменимым инструментом в многообразной человеческой деятельности. Вместе с тем процесс развития лазерной техники всё ещё весьма далёк от своего завершения, и можно надеяться, что в ближайшие годы он приведёт к появлению новых лазерных систем для уникальных практических междисциплинарных применений. Такие ожидания связаны с созданием и использованием в ведущих мировых лазерных центрах лазеров ультракороткой длительности, не превосходящей 1 пикосекунды (пс) = 10 –12 с и доходящей до 10 фемтосекунд (фс) = 10 –14 с. Новые идеи по использованию ультракоротких лазерных импульсов высокой интенсивности предвосхищают самые смелые научно-фантастические прогнозы. Их обсуждение могло бы вылиться в целую книгу, но я ограничусь пока коротким рассказом лишь об одной из них.

Наука и жизнь // Иллюстрации

Лазерная установка «Геркулес» Центра ультрабыстрых оптических явлений Мичиганского университета (США). Фото предоставил Анатолий Максимчук, научный сотрудник Центра.

Линейный ускоритель Стэнфордской национальной ускорительной лаборатории (США). Фото Peter Kaminski.

Энрико Ферми с рисунком циклотрона диаметром более 12,5 тысячи километров - фермитрона.

Схема ускорения электронов при самофокусировке лазерного импульса в плазме. На длине 1 сантиметр они набирают энергию до 800 МэВ.

Пузырёк, образованный лазером, ускоряет электроны, вброшенные (инжектированные) в плазму. Ускоряющее поле сосредоточено вблизи его задней границы.

Схема ускорения протонов с задней поверхности фольги. Они вылетают из атомов водорода воды, тонкой плёнкой покрывающей фольгу.

Ускорение протонов из сверхтонкой фольги в режиме направленного кулоновского взрыва.

Итак, чем же притягательны лазеры ультракороткой длительности? Прежде всего именно своей чрезвычайно короткой длительностью, позволяющей добиваться рекордной мощности при разумной энергии лазера. Так, для сравнительно невысокой энергии лазера в 30 Дж, мощность, отвечающая 30 фс длительности лазерного импульса, составляет 1 петаватт (ПВт) = 10 15 Вт, то есть превышает суммарную мощность всех электростанций мира! Вдобавок лазерное излучение допускает концентрацию энергии в объёме микронных размеров и тем самым рекордную плотность энергии. Современные методы фокусировки лазерного излучения позволяют сводить лазерные лучи в пятно размером, близким к дифракционному пределу, порядка 1 микрона (мкм). Соответственно, плотность потока энергии 1 ПВт лазерного импульса может доходить до 10 23 Вт/см 2 . Уже сейчас на менее мощной, 300 ТВт, установке «Геркулес» достигнута рекордная интенсивность 2×10 22 Вт/см 2 . Если же учесть, что энергия, которую может нести ультракороткий лазерный импульс, может доходить до сотен джоулей, то в ближайшие годы следует ожидать появления ещё более интенсивных лазеров. Причём это не гигантские «лазерные заводы» на уровне мегаджоульной энергии, создаваемые в настоящее время для целей лазерного термоядерного синтеза, а вполне компактные установки лабораторного масштаба. О них принято говорить как о сверхмощных лазерах на столе. А если появляются такие лазеры, не станут ли они создавать на столе сверхсильные электрические поля, способные ускорять частицы, причём с темпом ускорения, намного превосходящим достигнутый на ускорителях, включая самую крупную экспериментальную установку в мире - Большой адронный коллайдер? Ответ на этот вопрос положителен, но прежде чем его детально обсудить, подойдём к нему с исторической стороны.

В течение последнего столетия любо-знательное человечество упорно осваивало разные типы ускорителей, стремясь разгонять заряженные частицы до всё больших и больших энергий, что требовалось для постижения тайн микромира. Сформировался самостоятельный раздел физики элементарных частиц - физика высоких энергий, - изучающий взаимодействия элементарных частиц при энергиях столкновений, существенно превышающих массы самих сталкивающихся частиц. Однако, чем до более высокой энергии ускоряются частицы, тем больший размер приобретает ускоритель. Наибольший линейный ускоритель сооружён в Стэнфордском университете (США), и на длине 2 мили (3,2 км) он ускоряет электроны и позитроны до энергии около 50 ГэВ. Заметим, что линейные ускорители обладают одним существенным преимуществом перед циклическими - в них электроны не теряют энергию, так как вследствие постоянства скорости по величине и по направлению почти не излучают. Предельная энергия частиц может быть увеличена простым наращиванием длины, но это сдерживается экономическими соображениями. Дело в том, что в ускорителях увеличение энергии заряженных частиц происходит под действием электрического поля, направленного вдоль импульса частицы, а все детали ускорителя состоят из атомов, электроны которых легко отрываются от ядер, если приложить достаточно сильное электрическое поле. В лучших случаях удаётся добиться высоковольтной прочности, отвечающей напряжённости поля порядка 100 мегавольт (МВ)
на метр. При дальнейшем повышении напряжённости с поверхности материалов начинается интенсивное вырывание электронов, которые ударяются о стенки, порождая лавины вторичных электронов. Затем наступает высоковольтный разряд, приводящий к разрушению.

В линейных ускорителях лёгкие частицы, как правило, разгоняются электрическим высокочастотным полем, двигаясь синхронно (в резонанс) с изменениями поля, чтобы электрическая сила была всё время в ускоряющей фазе по отношению к движущейся частице. По существу используется принцип «сёрфинга частиц» на высокочастотной волне. В больших линейных ускорителях высокочастотную мощность генерируют большие электровакуумные приборы - клистроны, на частоте нескольких гигагерц (ГГц). Угроза возникновения пробоя существенно ограничивает величину допустимой напряжённости высокочастотного поля и соответственно темп набора энергии. Если отвлечься от экономической целесообразности, сама планета Земля ограничивает предельную энергию частиц, которая может быть достигнута с помощью традиционных ускорителей. В связи с этим интересно вспомнить гипотетический, охватывающий всю Землю, ускоритель, который можно назвать фермитроном, поскольку его набросок был сделан Э. Ферми в 1940-е годы. Даже такой ускоритель не позволит электрону набрать энергию выше 1 петаэлектронвольт (ПэВ) = 10 15 эВ. Очевидно, что простое увеличение длины ускорителя ведёт в тупик, коль скоро мы ставим задачу качественного прорыва в эффективности ускорения. Если для достижения электронами энергии 1 ГэВ в линейном ускорителе требуется длина
100 м, то для энергии 1 ТэВ уже будет требоваться ускоритель длиной 100 км!

Существенное повышение темпа ускорения частиц при использовании мощных короткоимпульсных лазеров могло бы кардинально уменьшить размеры ускорителя. Действительно, обсуждаемые лазерные импульсы могут возбуждать сверхсильные поля, но этого, как мы видели, оказывается недостаточно. Требуется отказаться от вакуума с конструктивными элементами традиционной ускорительной техники, заменив его средой, способной выдерживать сверхсильные поля. И здесь на помощь приходит сама природа. Под действием интенсивных лазерных импульсов любое вещество превращается в плазму. Это легко понять, если учесть, что внутриатомные поля оказываются малыми по сравнению с лазерными полями. Распространяясь, например, по газу, лазерный импульс полностью его ионизует на своём переднем фронте. Возникающая за фронтом плазма и есть та благодатная среда, которая допускает существование в ней гигантских электрических полей. И если предельное электрическое поле для традиционного ускорителя, как мы видели, не превышает 100 МВ/м, то в плазме оно может быть по крайней мере на три порядка выше - 100 ГВ/м, и, следовательно, длина ускорителя может быть во столько же раз меньше! Остаётся лишь создать в плазме высокочастотное поле, подобное полю в линейном ускорителе. Это придумали уже более тридцати лет назад , но только недавно реализовали для получения сгустков электронов с энергией в сотни МэВ.

Распространяясь в плазме, лазерный импульс выталкивает собой электроны. Поскольку ионы слишком массивны, они остаются практически неподвижными, образуя однородный положительно заряженный фон. Электрическое поле этого положительного заряда стремится вернуть назад вытолкнутые импульсом электроны. Ускоряясь этим полем, электроны проскакивают своё начальное положение. Так возникают колебания относительно ионов, которые называют плазменными. Поскольку лазерный импульс бежит по плазме, эти колебания следуют прямо за ним. На хвосте импульса возникает область пониженной электронной плотности, следом - повышенной, затем опять пониженной и т.д. В такой волне, волне разделения зарядов, называемой физиками кильватерной волной, фаза распространяется по плазме со скоростью импульса (близкой к скорости света). Электрическое поле этой волны подобно высокочастотному полю линейного ускорителя. В одной половине периода оно направлено по направлению распространения импульса, а в другой - в противоположном направлении. Теперь нужно электрон с начальной скоростью, близкой к скорости импульса, поместить в ускоряющую часть плазменного полупериода, и тогда он, двигаясь вместе с волной, начнёт ускоряться. Такой метод ускорения получил название кильватерного. Однако он будет работать, только если лазерный импульс, распространяясь по плазме, не станет расходиться. И здесь опять на помощь приходит природа в виде явления самофокусировки света в плазме, которое предсказал советский физик Г. А. Аскарьян в 1961 году. Оно позволяет лазерному импульсу проходить большое расстояние в плазме почти без потери интенсивности, тем самым обеспечивая большой набор энергии ускоряемыми частицами. На сегодняшний день рекорд по энергии ускоренных электронов составляет 800 МэВ. Такую энергию они набирали на длине 1 см. Когда же лазерному импульсу искусственно помогли не расходиться, направив его по капилляру, заполненному плазмой, удалось ускорить электроны до энергии 1 ГэВ на длине 3 см.

Отметим, что энергии электронов в сотни МэВ, полученные при кильватерном ускорении, были достигнуты в результате возбуждения лазерным импульсом весьма своеобразного плазменного поля, которое имело всего один период. В этом режиме интенсивность светового импульса превосходила 10 19 Вт/см 2 , и давление света на электроны плазмы было столь велико, что позади импульса возникала округлая область, в которой практически не стало электронов. За таким режимом закрепилось название bubble-режим (bubble (англ.) - «пузырёк»). Фактически за импульсом летит положительно заряженная дырка с характерным размером порядка диаметра лазерного пятна (10–20 микрон); плазменное поле, способное ускорять электроны, сосредоточено вблизи её задней границы. И здесь правомерен вопрос: о каком ускорении может идти речь, если на первый взгляд в формирующейся структуре и ускорять-то нечего, поскольку почти все электроны выдавлены из пузырька. Это наглядно демонстрирует проблему кильватерного ускорения - обеспечение эффективной инжекции электронов в ускоряющее плазменное поле. Однако она возникает и без принятия специальных мер. Это так называемая самоинжекция, когда по разным причинам небольшое количество электронов с релятивистской скоростью впрыскивается в ускоряющее поле. В bubble-режиме это происходит благодаря радиальному электрическому полю положительно заряженного пузырька. На рисунке траектории этих электронов, собирающихся с периферии пузырька, иллюстрирует полукруглая стрелка. Поскольку таких электронов немного, то и ток ускоренных частиц весьма мал. Как правило, речь идёт о полном заряде ускоренных до высокой энергии частиц на уровне всего лишь десятков пикокулонов (10 –12 Кл).

Уже давно обсуждаются различные схемы инжекции электронов в ускоряющее плазменное поле, позволяющие и получить электроны со скоростью, близкой к скорости света, и добиться их значительного количества. Предлагалось, например, использовать заранее приготовленный пучок электронов, синхронизованный с лазерным импульсом, в который он впрыскивается. При этой, так называемой оптической, инжекции электронный сгусток создаётся давлением света дополнительного импульса и ещё рядом специальных приёмов. Не буду подробно останавливаться на этом, а в качестве примера приведу лишь один приём, появление которого связано с курьёзным случаем из личной практики.

Много лет мы, теоретики ФИАНа, сотрудничаем с экспериментаторами Центра ультрабыстрых оптических явлений (CUOS) Мичиганского университета (США), где функционирует упоминавшаяся выше лазерная система «Геркулес» с максимальной в мире интенсивностью. На этой установке исследователи CUOS добились устойчивой генерации сгустков электронов в bubble-режиме при облучении газовой струи гелия, варьируя параметры лазера и струи. Мы же совместно с учёными из Российского федерального ядерного центра - Всероссийского НИИ технической физики им. академика Е. И. Забабахина для такого режима теоретически разрабатывали идею так называемой ионизационной инжекции. Её смысл состоит в том, чтобы в качестве мишени использовать не гелий, который полностью ионизируется на фронте лазерного импульса, позади которого почти не остаётся электронов для ускорения, а более тяжёлый газ. Он не станет ионизироваться передним фронтом лазерного импульса до конца, но может доионизировываться на максимуме импульса, где сильное лазерное поле способно вырвать электроны с нижних оболочек атома. Тогда эти электроны могли бы быть более эффективно захвачены плазменным полем и ускорены, что, по нашему мнению, привело бы к повышению тока высокоэнергичных частиц. Однако наше предложение использовать более тяжёлый газ экспериментаторы CUOS встретили со скепсисом, и на это действительно были разумные доводы. Дело в том, что тяжёлый атом при ионизации даёт так много электронов, что образующаяся плазма препятствует прохождению лазерного импульса. Таким образом, экспериментаторы продолжали опыты с гелием, а мы, теоретики, пытались подобрать более подходящий тяжёлый газ. Как часто бывает, истина лежала посередине, и на неё помог выйти случившийся курьёз.

Получение устойчивой генерации сгустков электронов высокой энергии предполагает, что их станут обнаруживать в каждом выстреле лазера. Но это невозможно при малом количестве ускоренных частиц. Однако такая более или менее устойчивая генерация всё-таки наблюдалась, причём исключительно по утрам, в начале рабочего дня. Через два-три часа она прекращалась, и всё оставшееся время эксперимент то давал, то не давал ускоренных частиц. В конце концов появилась догадка, что более устойчивой генерации электронов в утренние часы способствует воздух, проникший за ночь в патрубки, шланги и прочие устройства, создающие гелиевую струю. Таким образом, утром эксперимент проходил не с абсолютно чистым гелием, а с гелием, содержащим небольшую примесь тяжёлых атомов (азот, кислород). Догадку целенаправленно проверили, добавляя в гелий небольшое количество разных инертных газов и азота. Подбирая концентрацию тяжёлых атомов, экспериментаторам CUOS удалось добиться увеличения количества ускоренных частиц на два порядка. Так был открыт механизм ионизационной инжекции электронов. Замечу, только что стало известно об экспериментах, проведённых исследователями из Университета Калифорнии (Лос-Анджелес) и Ливерморской национальной лаборатории США, в которых благодаря ионизационной инжекции удалось ускорить электроны до энергии 1,5 ГэВ. Научная общественность с нетерпением ждёт публикации этих результатов.

Другая плазменная среда, которая могла бы ускорять частицы, - плазма с плотностью твёрдого тела. Она естественным образом образуется под действием короткого лазерного импульса, облучающего фольгу. Как правило, толщина фольг составляет от одного микрона до нескольких десятков. В последние годы твердотельные лазерные мишени стали широко применять в качестве источника релятивистских электронов. На их основе даже создан «ускоритель» непрерывного действия при использовании лазерных импульсов, следующих один за другим с высокой, практически килогерцовой (тысяча импульсов за секунду), частотой повторения . На твердотельных мишенях можно существенно поднять количество ускоренных за одну лазерную вспышку электронов. Однако их энергия ниже, чем в случае газовой плазмы. Здесь мы не будем останавливаться на ускорении электронов из фольг, а поговорим об ускорении с их помощью более тяжёлых частиц - протонов.

Как же происходит ускорение протонов при воздействии мощных коротких лазерных импульсов на фольгу? Прежде всего, лазерное излучение ионизирует мишень и ускоряет образовавшиеся электроны, которые проходят фольгу насквозь и вылетают с её противоположной стороны. Источником этих электронов служит плазменная корона (преплазма), возникающая у передней поверхности мишени из-за того, что по техническим причинам лазерному импульсу предшествует довольно длинный, наносекундного масштаба (1 нс = 10 –9 с), предымпульс малой интенсивности (пьедестал). Улететь далеко за мишень электронам преплазмы, ускоренным в направлении лазерного импульса, не удаётся, поскольку их тормозит электрическое поле ионов, оставшихся в фольге. В результате вблизи задней поверхности фольги образуется отрицательно заряженное облако электронов - виртуальный катод и электрическое поле, которое направлено перпендикулярно к поверхности мишени и разделяет заряды. Оно ионизирует атомы, находящиеся у задней поверхности мишени. Как правило (если не предпринимать специальных мер очистки поверхности), среди образовавшихся там ионов имеется много протонов. Они вылетают из атомов водорода, входящего в состав адсорбированной на поверхности фольги очень тонкой плёнки воды. И тогда под действием электрического поля разделения заряда протоны начинают ускоряться, достигая энергий в десятки МэВ.

Конечно, поле разделения заряда будет ускорять и более тяжёлые ионы мишени, летящие позади протонов. Однако набираемая на один нуклон энергия иона будет максимальна именно для протонов, поскольку для них отношение заряда к массе максимально. Чтобы повысить эффективность передачи энергии более тяжёлым ионам, нужно очистить заднюю поверхность фольги от водяной плёнки, нагревая мишень до высокой температуры или облучая её поверхность слабым лазерным импульсом до прихода основного импульса.

К настоящему времени рекордная энергия ускоренных протонов составляет около 70 МэВ. Целью ближайших лет ставится существенный рост этой величины на имеющемся сегодня уровне энергии лазеров. Успех в этом направлении связывают как с прогрессом в изготовлении микромишеней, так и с улучшением качества лазерного импульса. Проиллюстрируем это на одном примере из числа обсуждаемых перспективных схем лазерного ускорения протонов. Несколько лет назад было доказано, что наибольшая энергия ускоренных протонов достигается при использовании ультратонких фольг. Требуемая толщина фольги должна составлять величину, примерно равную глубине скинового слоя, области, в которую проникает лазерное поле, облучающее плотную плазму. Для плазмы с твердотельной плотностью эта величина составляет от нескольких до сотен нанометров (1 нм = 10 –7 см) в зависимости от интенсивности лазерного излучения. Современные технологии позволяют получать нанометровые фольги хорошего качества, пригодные для использования в виде мишеней. Взаимодействие мощного лазерного импульса с такой мишенью и ускорение частиц осуществляются во всём её объёме. Поскольку энергия электронов при этом становится релятивистской, можно говорить о появлении нового научного направления - релятивистской наноплазмоники. Мы уже говорили, что реальный лазерный импульс не идеален - у него имеется предымпульс, который легко разрушает тонкую мишень ещё до прихода основного импульса. С появлением техники плазменных зеркал удаётся очистить лазерный импульс от предымпульса, и с этим связаны надежды на более эффективное ускорение протонов в ближайшем будущем.

Как могла бы выглядеть схема ускорения «идеальным» лазерным импульсом протонов из ультратонкой фольги? Берётся фольга субмикронного размера, состоящая из смеси тяжёлых атомов и водорода. Под действием короткого лазерного импульса фольга ионизируется, а образовавшиеся электроны быстро её покидают. Оставшийся положительный заряд ионов претерпит так называемый кулоновский взрыв. При этом протоны, как наиболее лёгкие, будут вытолкнуты наружу и создадут слой, который станет ускоряться электрическим полем. Тяжёлые ионы полетят позади протонного слоя, действуя на него как «кулоновский поршень». Такая схема ускорения протонов подтверждает трёхмерное численное моделирование .

Заканчивая этот короткий рассказ, отмечу, что параллельно с разработкой методов лазерного ускорения частиц и способов улучшения качества генерируемых пучков ионов и электронов идёт широкое обсуждение и проведение опытов по их практическому использованию. Среди них:

быстрый поджиг термоядерной мишени (когда частицы высокой энергии направляются в сжатое термоядерное горючее и воспламеняют его, инициируя реакцию синтеза, подобно тому, как в двигателе внутреннего сгорания свеча поджигает топливо);

электронная и протонная радиография (позволяющая увидеть структуру и внутренние поля плотного вещества, подобно рентгеновскому снимку);

электронная и адронная терапия рака (доступная пока только с использованием ускорителей, что ограничивает применение этого метода лечения);

инициирование ядерных реакций, включающее получение короткоживущих изотопов и короткоимпульсного источника нейтронов (что делает лазеры полезным инструментом ядерной физики и технологии);

новые источники электромагнитного излучения (от терагерцевых волн до гамма-излучения) и многое другое.

Предстоит трудный путь для достижения всех этих практических результатов, но и выигрыш станет достижением мирового масштаба.

Литература

1. Yanovsky V., Chvykov V., Kalinchenko G., Rousseau P., Planchon T., Matsuoka T., Maksimchuk A., Nees J., Cheriaux G., Mourou G. and Krushelnick K. // Optics Express, 2008, v. 16, p. 2109.

2. Tajima T. and Dawson J. M. // Physical Review Letters, 1979, v. 43, p. 267.

3. Mordovanakis A. G., Easter J., Naumova N., Popov K., Masson-Laborde P-E., Hou B., Sokolov I., Mourou G., Glazyrin I. V., Rozmus W., Bychenkov V., Nees J. and Krushelnick K. // Physical Review Letters, 2009, v. 103, p. 235001.

4. Брантов А. В., Быченков В. Ю. // Физика плазмы, 2010, т. 36, с. 279.

В другую сторону

Если лазер научились использовать для охлаждения материи, точнее, для замедления ее до сверхнизких скоростей, то возникает естественный вопрос: можно ли, напротив, ее ускорить? Ответ положительный, этим занимаются во многих лабораториях мира, в том числе в совместной лаборатории релятивистской лазерной плазмы Физического института имени П.Н. Лебедева и Международного лазерного центра МГУ имени М.В. Ломоносова. Разгоняют здесь не атомы, а ионы и электроны. Остановимся для примера на электронах. Итак, обо всем по порядку.

Почему вообще родилась идея использовать лазеры для ускорения частиц? Существуют же ускорители… почему не обойтись ими? Суть в том, что для ускорения частиц требуются либо сильные поля, либо поля послабее, но на протяженных расстояниях. Природа так устроена, что сильное поле невозможно создать в вакууме, окруженном твердыми предметами. «Как только прикладывается сильное поле, все, из чего состоит любая конструкция, ионизуется. Вырываются электроны, идет лавина, возникает пробой. В таких условиях никакие эксперименты не пойдут», - поясняет главный научный сотрудник ФИАН Валерий Быченков, занимающийся проблемами лазерного ускорения заряженных частиц. Иное дело плазма - среда, состоящая из ионизованных частиц. Она уже по определению может выдержать сильные поля, а лазер в состоянии создать и поля, и саму плазму. Иными словами, ускорять частицы здесь можно на маленьких масштабах. Первая такая идея появилась 30 лет назад, но подходящие лазеры появились только ближе к концу XX века, и это направление стало интенсивно развиваться.

Итак, для лазерного ускорителя нужны лазер и облако газа. Проходя сквозь газ, мощный импульс лазерного луча выталкивает на своем пути электроны. Можно достичь такого режима, что позади импульса образуется область, практически полностью лишенная отрицательно заряженных частиц («дырка»).

«Именно в этой области, - говорит Быченков, - можно наиболее эффективно ускорять электроны. Дырка движется за лазерным импульсом. В обратном направлении ее обтекают вытолкнутые лазером электроны. Те, что попадут внутрь, - ускорятся».

Ученые называют возникающую структуру bubble (пузырь - англ.). Она и вправду похожа на пузырь - без электронов внутри, с «пленкой» из электронов снаружи. Но ускориться могут только те электроны, которые попадут в сам «пузырь». Именно с изящным методом внедрения таких электронов связано научное достижение теоретической группы ФИАН, возглавляемой Валерием Быченковым. Они предложили схему, с помощью которой в итоге был достигнут принципиально новый уровень энергий электронов - 1,5 ГэВ (до этого весь мир много лет «топтался» на уровне, не превосходящем 1 ГэВ).



Задумка российских ученых состояла в следующем. Обычно в качестве рабочего вещества плазмы берут гелий: он очень легко ионизуется лазером. И в этом проблема: «кончик», или, лучше сказать, передний фронт лазерного импульса имеет небольшую интенсивность, но все равно «сдувает» все электроны с атомов гелия, и большинство из них уходит далеко от «пузыря».

Фиановцы предложили использовать газ потяжелее, например азот или кислород, энергия полной ионизации которых выше.

То есть часть легких электронов с внешних оболочек атома уйдет с передним фронтом, а часть останется и дождется пика лазерного импульса. Он их тоже «сдует», но пойдут они уже совсем по другим траекториям, попадая в «пузырь» и в нем ускоряясь.

Дальше нужен был эксперимент, и российские физики нашли его, уже готовый, - только, увы, в Мичиганском университете (США). Однако американцы не сразу поверили ученым из России: ведь если в плазме применять атомы газов с большим числом электронов, это мешает распространению лазерного луча.

Тераваттный фемтосекундный лазерный комплекс на сапфире с титаном МЛЦ МГУ. На нем проводятся, в частности, эксперименты по лазерному ускорению заряженных частиц. Фото Григория Головина, Игната Соловья, STRF.ru

«Американцы хотели работать с гелием, - вспоминает Быченков. - Приходят они утром на работу, включают лазер с гелием и наблюдают ускорение электронов. А ближе к ланчу картинка исчезает. Получается анекдот: чем исследователи голоднее, тем меньше у них шансов получить электроны. Вечером они расстроенные уходят домой, утром возвращаются, включают установку, получают электроны…. те ближе к обеду исчезают. И так всю дорогу… Выяснилось: когда установка вечером выключалась, все капилляры и патрубки заполнялись воздухом. Утром в системе был якобы «гелий», а на самом деле и более тяжелые элементы - азот и кислород. Затем трубки наполнялись чистым гелием, и… как говорится, смотрите выше. Иными словами, тяжелые элементы надо было брать в небольшом количестве, тогда это на распространение лазерного света не повлияет - что, собственно, и хотелось попробовать с самого начала, и что, собственно, и получилось в эксперименте само собой».

В конце концов все это интересная физика, но лазерный ускоритель - не просто красивая игрушка. С его помощью можно создавать специальные источники рентгеновского и гамма-излучения. Конечно, для рентгена легких они не подойдут, но ими, в частности, можно проводить проверку любого контейнера с радиоактивными материалами без его вскрытия. Обычно без дополнительных исследований нельзя сказать, что в нем находится. Однако если контейнер облучить из источника, основанного на ускоренных лазером частицах, то можно «пробежать» по целому спектру гамма-излучения, и на какой-то длине волны радиоактивный материал обязательно отзовется, а это позволит определить его природу.

Как ускорение, так и замедление частиц с помощью лазера - это сравнительно новые области исследований. И можно не только найти им какие-то применения, но и дойти до таких экстремальных состояний, которые никаким другим образом получить нельзя. А ведь, как уже говорилось в начале, именно в экстремальных состояниях рождается действительно новое в науке. В частности, при охлаждении атомов это конденсат Бозе-Эйнштейна. Лазерное ускорение пока не достигло столь «экстремальных» успехов. Но ученые надеются, что, ускоряя лазером уже протоны, смогут достичь гигантских значений магнитного поля в узких областях пространства - до 1 млн тесла (для сравнения: мировой рекорд для постоянного магнитного поля - всего несколько десятков тесла, а поля в атомах не превышают 10 тысяч тесла). Предсказать, что это откроет для физики, мы, конечно же, не возьмемся - предоставим это читателю. Для затравки лишь добавим, что поля именно такого порядка существуют в очень любопытных объектах нашей Вселенной - нейтронных звездах, имеющих гигантскую плотность до 10 18 кг/м 3 .

Здравствуйте, меня зовут Александр, и я физик. Со стороны это может прозвучать как приговор, но на самом деле так и есть. Вышло так, что я занимаюсь фундаментальными исследованиями в физике, а именно исследую ускоренные заряженные частицы: протоны и все те, которые побольше - положительные ионы, то есть. В исследованиях я не пользуюсь большими ускорителями вроде БАК, а стреляю по фольге лазером, а из фольги вылетает импульс протонов.


Теперь пару слов обо мне. Я закончил факультет фотоники и оптоинформатики ИТМО в Санкт-Петербурге, потом уехал в магистратуру в университет Аалто (это в Финляндии) по направлению микро- и нанотехнологий, а потом плюнул на все эти маленькие штучки, микроскопы, а в особенности на чистую комнату. И ушел я в фундаментальную науку с большими лазерами. Сейчас я тружусь в аспирантуре на юго-западе Швеции в городе Лунд в одноименном университете. Это примерно на расстоянии пушечного выстрела от Копенгагена.

Как ускорил, так и полетело

Сами по себе ускорители заряженных частиц идея не новая, но метод, которым я их разгоняю относительно свежий, примерно мой ровесник. Он позволяет существенно снизить размеры ускорителя и его стоимость, в том числе стоимость работы и обслуживания. Разницу между двумя типами можно оценить на картинке, которая ниже.


Слева - электростатический линейный ускоритель (немного разобранный); Справа - мой маленький, но гордый делатель дырок в фольге

Давайте подробнее сравним эти два образца сумрачного физического гения. Посмотрите на левый ускоритель и на правый, потом снова на левый и снова на правый: да, мой на коне (шутка - прим. автора). На самом деле, мой занимает всего метр в диаметре, а сами протоны ускоряются из кусочка фольги. Ее держатель находится ровно посередине круга, на нем надета красивая медная юбочка. Это гораздо проще и компактнее левого образца, который размером с автобус и вдобавок заполнен удушающим газом. Итак, вдоволь самоутвердившись (в физике часто бывает, что чем меньше - тем лучше), можно обратиться и к физике процесса ускорения.

Поскольку мы ускоряем заряженные частицы, то делать это логичнее всего электрическим полем. Поле мы будем характеризовать напряженностью. Для тех, кто после школы ушел во фронт- и бэк-энд, напомню: напряжённость электрического поля - векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению силы, действующей на неподвижный точечный заряд, помещённый в данную точку поля, к величине этого заряда (грязный копипаст с Википедии). Имеет размерность В/м. Возвращаясь к сравнению, ускоритель слева разгоняет протоны до 4 МэВ (Мегаэлектронвольт), то есть 2.77*10 7 м/с или 9,2% от скорости света. Поскольку заряд протона - 1, а длина ускорителя метра два, то напряженность поля составит 2 МВ/м. Здесь мы предположили, что во всех местах поле направлено в одну сторону и, в общем, были очень близки к истине. Стильный ускоритель имеет поле напряженностью порядка нескольких ТВ/м, то есть примерно в миллион раз больше. Все-таки стоит признать, что его длина составляет всего несколько микрон.

Итак, к данному моменту мы выяснили, чье поле круче. Настало время обратиться к физическим и инженерным механизмам, которое это поле создают. В случае с обычным ускорителем есть два металлических листа, один из которых заряжен отрицательно, а второй никак. Вспомните школьный эксперимент про натирание эбонитовой палочки куском шерсти. Здесь принцип абсолютно тот же, но исполнение гораздо сложнее. Если ускорять протоны из фольги, то поле создается электронами, электроны вылетают из горячей плазмы, плазма получается и нагревается лазером, и обо всем этом оставшаяся часть поста.

Хотите, я его стукну, и он станет фиолетовым в крапинку?

Если стукнуть достаточно сильно, то можно увидеть много замечательных физических явлений. Именно так парни из Гарварда получили металлический водород, а потом потеряли его.

В моем случае, я стреляю по фольге лазером. Подробнее я его опишу после объяснения нетривиальной физики процессов получения теплой плотной материи, именно так по-научному называется плазма, являющаяся виновницей торжества ускорения моих протонов. А теперь обо всем по порядку.

Лазер генерирует импульсы длиной волны 800 нм и 35 фс длительностью (10 -15 с), то есть реальная длина импульса в вакууме примерно 10 мкм. В этот импульс упихано примерно 2 Дж энергии, а это много. Если взять этот импульс и сфокусировать на фольгу в аккуратное круглое пятнышко 5 мкм диаметром, то интенсивность получится порядка 10 20 Вт/см 2 . Это уже неприлично много. Снова чуть-чуть сравнений: сталь можно спокойно резать при интенсивности 10 8 Вт/см 2 (ну или около того).

На самом деле, импульс лазера в силу особенностей конструкции усилителя имеет предшествующий пьедестал длительностью примерно 500 пс, и этот самый пьедестал сильно помогает хорошо ускорить протоны.

Ионизирован - значит вооружен

Вспомним, что происходит со светом, когда он попадает в вещество. Энергия должна сохраниться, а значит есть всего три варианта событий: отражение, пропускание и поглощение. В суровой жизни присутствуют все перечисленные сразу. На самом раннем этапе нас интересует поглощение.

Итак, у нас есть пьедестал, который мы тоже отлично фокусируем на кусочек фольги, а он там отлично поглощается. Чтобы не вдаваться в сложности физики твердого тела, рассмотрим поглощение отдельно стоящего атома. Из квантовой механики мы знаем, что поглотить можно только фотон, энергия которого в точности равна энергии переход электрона из одного состояния в другое. Если энергия фотона больше, чем энергия ионизации (то есть отправки электрона из родительского гнезда в свободное путешествие), то избыток перейдет в кинетическую энергию электрона, тут все просто. В нашем случае фотоны с длиной волны 800 нм не обладают достаточной энергией (это энергия одного фотона, а не всего импульса!), чтобы ионизировать мишень, но здесь физика приходит нам на помощь. Помните, я упоминал большую интенсивность излучения? Если в довесок мы еще вспомним, что свет можно представить как поток фотонов, а интенсивность ему прямо пропорциональна, то получается, что поток фотонов ну очень большой. А если поток такой большой, то велика вероятность, что несколько фотонов прилетят в одно место и в одно время, а при поглощении их энергии сложатся, и ионизация все-таки случится. Это явление, как ни странно, называется многофотонной ионизацией, и мы регулярно им пользуемся.

На данный момент мы имеем, что электроны успешно оторваны, а значит, что основной импульс приезжает на уже готовую плазму и начинает ее греть.

Основы физики плазмы (не придумал шутку, ах)

Перед нагревом стоит немного рассказать про плазму как состояние материи. Плазма, она как газ, только электроны отдельно, а ядра отдельно. Мы будем считать нашу плазму практически идеальным газом, но состоящим из электронов.

Нашей главной характеристикой плазмы будут ее плотность (количество электронов на единицу объема), эту величину мы в дальнейшем будем обозначать $n_e$ (не путать с показателем преломления!), и температура этих самых электронов, то есть их средняя скорость движения. Это описывается распределением Больцмана так же, как и в школьном курсе физики:

$$display$$\frac{m_e v^2}{2} = \frac{1}{2} k_B T_e,$$display$$


откуда легко следует

$$display$$\langle v \rangle = \sqrt{k_B T_e/m_e},$$display$$


где $inline$k_B$inline$ - постоянная Больцмана, $inline$T_e$inline$ - температура электронов, ну и $inline$m_e$inline$ - масса электрона. Да, здесь мы рассмотрели одномерный случай, но большего нам для описания наших процессов и не надо, на самом деле.

Теперь мы приложим к уже описанной плазме электрическое поле. Напомню, что состоит плазма из заряженных частиц, а значит при данной плотности на некотором расстоянии от того места, где мы приложили поле, электроны заслонят (экранируют) собой источник (такая толпа маленьких Матросовых - прим. автора). Расстояние, которое необходимо для этого называется Дебаевской длиной и задается уравнением

$$display$$ \lambda_D = \sqrt{\frac{\epsilon_0 k_B T_e}{q^2_e n_e}}. $$display$$


Здесь $inline$q_e$inline$ , очевидно, заряд электрона, а $inline$\epsilon_0$inline$ - диэлектрическая проницаемость вакуума, такая фундаментальная константа. Немного проанализируем эту формулу, чтобы увидеть за ней несложную физику процесса. Увеличивая плотность электронов, мы уменьшаем среднее расстояние между ними, в результате за меньшее расстояние мы соберем достаточно электронов, чтобы полностью экранировать наше поле. С другой стороны, чем больше температура, тем больше среднее расстояние между электронами.

Из-за эффекта экранирования и вполне определенной (от температуры) средней скорости движения электронов плазма реагирует на внезапно прилетевшее поле не мгновенно. Логично предположить, что время отклика связано с Дебаевской длиной и скоростью движения электронов. Хорошая аналогия - бросок камня в озеро. По сравнению с целым озером камень воздействует на поверхность воды точечно. Часть воды изменяется сразу (это там, где плюхнуло), а затем волны начинают распространяться по водной глади. В случае с плазмой внезапно появившееся электрическое поле - это камень. Размеры плюха обусловлены длиной экранирования (дальше него поле не действует), а распространение волн зависит от того, насколько близко электроны находятся друг к другу. Мы можем ввести такую характеристику как время отклика плазмы:

$inline$ t_D = \lambda_D / v $inline$ . По большому счету она показывает нам то время, за которое информация об изменении приложенного поля дойдет до тех электронов, которые этого поля как бы и не видели.

Поскольку мы физики, время мы не очень любим. Гораздо удобнее работать с частотами, поэтому мы введем понятие собственной частоты плазмы. Эта величина покажет нам, как часто мы можем менять поле, чтобы все скопление электронов, которое мы гордо называем плазмой, успевало на эти изменения отреагировать. Ну что может быть проще? Поделим единицу на время отклика, и вот она - частота:

$$display$$ \omega_p = \frac{1}{t_D} = \sqrt{\frac{q^2_e n_e}{\epsilon_0 m_e}}. $$display$$


Легко заметить, что от плотности электронов зависит собственная частота колебаний плазмы. Чем больше электронов, тем больше частота. Можно провести еще одну аналогию, но на этот раз с пружинным маятником. Большая плотность электронов говорит нам, что они ближе друг к другу, а значит и взаимодействуют сильнее. Положим, что их взаимодействие прямой пропорцией связано с упругостью пружины маятника. А чем больше упругость, тем выше частота колебаний.

Собственная частота плазмы также определяет ее показатель преломления. Если честно написать волновое уравнение коллективного движения электронов в плазме, а потом предположить небольшие изменения электронной плотности (делать этого мы здесь не будем, потому что это скучно), то задается показатель преломления так:

$$display$$ \eta = \sqrt{1-\frac{\omega^2_p}{\omega^2_0}}. $$display$$


Здесь $inline$\omega_0$inline$ - круговая частота приложенного электрического поля. Она в рад/с а не в Гц!

Посмотрим внимательно на это выражение. Как физик-экспериментатор я души не чаю в действительных числах, а комплексные стараюсь игнорировать, особенно комплексный показатель преломления. Ну как может свет, в конце концов, распространяться в веществе в i раз медленнее, чем в вакууме? Это же бред какой-то! На самом деле нет, но об этом в другой раз. Если $inline$\omega_0 > \omega_p$inline$ , то выражение имеет действительной значение, и переменное электрическое поле распространяется внутри нашей плазмы. Все довольны, а такую плазму мы будем величать недостаточно плотной. Однако если $inline$\omega_0 < \omega_p$inline$ , то показатель преломления становится не то что комплексным, а целиком мнимым. В этом случае (и не просто потому что я так захотел) волна вообще не будет там распространяться, а сразу отразится без потерь. Это слишком плотная плазма. Очень классное явление, кстати. Называется плазменным зеркалом.

И в качестве десерта $inline$\omega_0 = \omega_p$inline$ . Это плазма критической плотности. В этом случае она начинает входить в резонанс с вынуждающим (поданным нами) переменным электрическим полем. Для такого особого случая можно даже ввести понятие критической плотности и задать ее вот так:

$$display$$ n_c = \frac{\epsilon_0 m_e \omega^2_0}{q^2_e}. $$display$$


Естественно, для каждой частоты вынуждающего поля критическая плотность своя.

ШОК! Нагрев плазмы! Для этого надо только...

В нашем случае мы остановимся только на одном механизме нагрева, который преобладает в эксперименте.

Для начала, пусть плазма, которую мы образовали пьедесталом будет иметь плавный градиент плотности, в этом случае мы имеем нагрев через резонансное поглощение. Иллюстрация этого на картинке дальше.


Иллюстрация процесса резонансного поглощения: а) распределение плотности электронов вблизи передней стороны мишени; б) преломление лазерного пучка в плазме с градиентом плотности; в) электрическое поле в плазме

Итак, лазер светит на нашу плазму под углом, ну пусть 45 градусов, и при этом он поляризован в плоскости падения. Поляризация обозначена красными стрелочками на рисунке. Наша плазма имеет градиент плотности, а значит ее показатель преломления непрерывно меняется (здесь - растет). В какой-то момент случится так, что некоторый слой плазмы для нашего лазера станет «поворотным» и он отразится, то есть некоторое время будет распространяться параллельно критическому слою. Важно отметить, что повернет он раньше того, как долетит до слоя с критической плотностью, поскольку запустили мы его под углом к нормали. Плотность плазмы, на которой лазерный пучок повернет, задается таким уравнением:

$$display$$ n_t = n_c \cos^2 \alpha,$$display$$


где $inline$n_c$inline$ - критическая плотность, а $inline$\alpha$inline$ - угол падения света.

Теперь начинается самое интересное. Вспомним, что свет - это не только поток фотонов, но еще и электромагнитная волна, то есть у нашего импульса есть электрическое поле, которое гармонически колеблется с большой амплитудой. При распространении света параллельно критическому слою образуется стоячая волна, которая не изменяется с течением времени (естественно, пока лазерный импульс на месте). Поле этой волны, на самом деле, проникает дальше того слоя плазмы, где свет повернул, и дотягивается до критического слоя. Напомню, что частота колебаний плазмы в критическом слое такая же, как и частота лазерного излучения, а значит происходит резонанс. Когда лазер перестал светить, энергия, которую он сообщил электронам в критическом слое, распределяется через удары остальным электронам, а это и значит, что плазма нагрелась.

Так а где, собственно, ускорение?

Теперь, когда мы хорошо прогрели электроны в плазме, а лазер уже не светит, можно рассказать, как ускоряются протоны. Для этого посмотрим на картинки ниже. До этого момента я так и не говорил, откуда вообще берутся протоны. Естественно, они появляются не из ядер материала фольги. Поскольку мы не очень аккуратные и не носим перчатки (в них руки потеют сильно), то на поверхности фольги оказывается вода и углеводороды. Ионизированный водород и есть наш бесценный источник протонов. Проверено: если убрать загрязнения, то протонов не будет.

Формирование плазмы пьедесталом, то есть ионизация передней стороны мишени. В качестве мишени обычно используют фольгу толщиной 0,4 - 12 мкм.

Здесь основная часть импульса взаимодействует с созданной плазмой и нагревает ее. Некоторые электроны настолько хорошо прогрелись, что вылетают с обратной стороны мишени.

Когда электронов повылетало достаточно много, оставшийся положительный заряд в фольге тянет их обратно. В плазме они снова нагреваются и вылетают. На некоторое время устанавливается динамическое равновесие. Электрическое поле направлено перпендикулярно мишени

Это самое электрическое поле отрывает протоны и другие ионы (в зависимости от того, что там было вообще) от задней поверхности мишени, а затем ускоряет их. К тому моменту, когда ионы ускорились, электронное облако уже разваливается, и все частицы начинают лететь дальше вместе. И тут мы начинает считать, что они и не взаимодействуют больше.

Разделяй и властвуй

На данный момент позиция такая: лазер давно не светит, в фольге дырка, протоны с электронами дружно летят от мишени нормально к ее задней поверхности. Электроны нам совсем не нужны, поэтому тут нам приходит на помощь магнит. Когда пучок заряженных частиц пролетает через магнитное поле, силы Лоренца каждую частицу отклоняют пропорционально ее скорости и заряду. Соответственно, протоны и электроны отклонятся в разные стороны, и в сторону электронов мы просто смотреть не будем. Кстати, чем больше энергия протона (то есть его скорость), тем меньше он отклонится. Это значит, что, поставив экранчик, который к протонам чувствителен, мы сможем посмотреть энергии ускоренных протонов. Еще немного сравнений в цифрах: магнит, который стоит у нас постоянный и создает поле около 0,75 Тл; в аппаратах МРТ магнитное поле 1,5 - 3 Тл.

Кроме этого, мы можем посмотреть профиль пучка летящих протонов. Он круглый, кстати. А если мы сможем померить еще и энергию протонов в каждой части пучка, то сможем однозначно восстановить форму электронного облака, которое наши протоны ускорило.

Вместо заключения

Может возникнуть справедливый вопрос, зачем все это нужно. Мой любимый ответ - просто так. Это фундаментальная наука, и пытаться найти ей сиюминутные применения бессмысленно. Возможно, через сколько-то лет она найдет свое применение в лечении рака или термоядерном синтезе, а пока главная задача - узнать что-то новое о мире вокруг нас, просто так, потому что интересно.

Для особо любопытных про сам лазер и его устройство

Как и было обещано, здесь я расскажу про лазер, с помощью которого я и делаю науку. Я уже упоминал некоторые характеристики нашего лазера, но не говорил о частоте повторения импульсов. Она составляет примерно 80 МГц. Эта частота определятся только длиной резонатора и обратна времени, за которое свет успевает слетать по резонатору туда-обратно. Забегая вперед, скажу, что на такой частоте усиливать импульсы нецелесообразно, невероятно сложно с инженерной точки зрения, да и электричества не напасешься.

Особенно вдаваться в лазерную теорию я не буду. Основы того, откуда берется лазерное излучение отлично изложены в статье на Википедии про вынужденное излучение. Если постараться быть совсем кратким, то для лазерного излучения нужны три составляющие: активная среда (из нее как раз и вылетают фотоны), накачка (она поддерживает активную среду в состоянии, в котором больше возбужденных атомов, которые могут излучить), а также резонатор (он обеспечивает то, что фотоны копируют друг друга при многократных прохождениях через активную среду). Если составить все компоненты вместе и помолиться, то лазер начнет светить, но непрерывно. Если постараться еще, то можно заставить его генерировать импульсы, в том числе и такие короткие, как на моей установке. Для самых любознательных, метод генерации фемтосекундных импульсов называется пассивной синхронизацией мод. И теперь небольшая особенность ну очень коротких импульсов. Часто считают, что лазер светит на одной длине волны, и в непрерывном режиме, а также на длинных импульсах это можно даже назвать правдой. На самом деле, из-за ряда сложных физических процессов, которые здесь мы обсуждать уж точно не будем, временная форма импульса и его спектр связаны преобразованием Фурье. То есть чем импульс короче, тем шире его спектр.

Допустим, что мы запустили задающий генератор, но энергия его импульсов несколько нДж. Помните, в начале я говорил, что энергия в импульсе, который прилетает в мишень около 2 Дж? Так вот, это в миллиард раз больше. Значит, импульс надо усилить, и про это мы поговорим подробнее.

Короткие импульсы вообще характеризуются очень большими пиковыми мощностями (помните же, энергию поделить на время?), а у этого есть ряд осложнений. Если в среду посветить излучением с большой интенсивностью (мощность на единицу площади), то она сгорит, а если активная среда сгорела, то усилить уже ничего не получится. Именно поэтому мы выбираем частоту повторения 10 Гц и усиливаем только их. Поскольку оборудования много и все оно работает именно на такой частоте, у нас есть специальная коробка, которая всему железу эти 10 Гц раздает, и для каждого устройства можно выбрать задержку получения сигнала с точностью до нескольких пикосекунд.

Бороться с высокой интенсивностью можно двумя способами. Как несложно догадаться из ее определения, нужно либо увеличить площадь, либо уменьшить мощность. С первым все предельно ясно, а вот второй способ стал прорывом лазерной технологии в двадцатом века. Если импульс изначально очень короткий, его можно растянуть, усилить, а потом снова сжать.

Чтобы понять, как это сделать, обратимся к основам оптики. Для разных длин волн показатели преломления в среде разные, а это значит (по определению показателя преломления, кстати), что с ростом показателя преломления уменьшается скорость распространения света в среде. И вот мы запустили в среду наш импульс, и его красная часть прошла материал быстрее, чем синяя, то есть импульс стал длиннее, а его пиковая мощность упала. Ура, теперь ничего не горит! Для более глубоких познаний в этой области рекомендую погуглить и почитать про усиление чирпированных импульсов (оно же Chirped Pulse Amplification или CPA).

Все, что нам осталось сделать - это усилить импульс, сжать, сфокусировать и отправить его делать дырку в фольге!

А теперь немного картинок с подписями.


Собственно фоточка лаборатории. Цилиндрическая хрень посередине - вакуумная камера, потому что протоны очень паршиво летают в воздухе и все время стукаются о его молекулы. Ну и в целом, с вакуумом все смотрится круче. Синяя штука справа - свинцовая стенка, чтобы невзначай не получить суперспособностей и лучевой болезни. Сам лазер находится за дверью, которая слева с желтым знаком ахтунга


А вот и сама стена в профиль. Да, внутри она набита свинцом, как Винни-Пух.


За стенкой находится наш командный пункт, когда мы стреляем, то по технике безопасности положено сидеть за ней. От радиации мы, конечно, не умрем, но вот ослепнуть можно запросто. Здесь пять мониторов на два компа, запутаться во всем этом барахле очень легко. На одном из компов есть колоночки, поэтому во время работы в подземелье можно слушать Лободу и Большого Русского Босса, по необъяснимым причинам они нравятся и моим коллегам тоже. Только половина из них шведы, кстати.


У нас еще есть свинцовая дверь-купе. Она на гидравлическом приводе.


Вот мы и внутри комнаты с лазером. Это фотография первого стола, на котором рождается лазерный импульс. Здесь же он предусиливается (в 1000 раз примерно) и растягивается. На полочке сверху стоит куча очень важной и нужной электроники, без которой лазер работать не будет.


Это второй стол, в котором усиливается излучение после первого. Этот усилитель - наша главная рабочая лошадка - он повышает энергию в сорок тысяч раз. На самом деле, в нем стоит два разных по устройству усилителя: многопроходовый и регенеративный. В первом импульс просто несколько раз проходит через активную среду. Во втором есть свой собственный резонатор. С помощью электрооптических затворов (ячейки Покельса) импульс запускают внутрь, он проходит там несколько раз, пока не усиление не насытится, а потом его выпускают дальше. Именно здесь так важна скорость и точность открытия-закрытия затворов.


Это третий стол, тут усиление примерно 15 раз. Башня посередине, которая торчит над крышкой - криостат. В нем в вакууме находится здоровенный кристалл, который охлаждается жидким гелием до температуры -190 градусов Цельсия.


Это отдельная комната, в которой находятся источники питания накачки третьего стола и основные вакуумные насосы. КПД от розетки у системы так себе, примерно 0,1\%. Я как-то посчитал, что потребляемая электрическая мощность примерно 160 кВт. Это примерно 960 видеокарт можно запитать и майнить, майнить, майнить. Столько электричества потребляется при усилении на частоте повторения 10 Гц. Если бы мы пытались усилить 80 МГц, то потребление выросло бы в 8 миллионов раз.

Спасибо за внимание!



План:

    Введение
  • 1 Прямое ускорение лазерным полем
  • 2 Ускорение в плазменной волне
  • 3 Примечания
  • Литература
    • 5.1 Научная
    • 5.1.2 Научно-популярная

Введение

Ла́зерное ускоре́ние электро́нов - процесс ускорения электронного пучка с помощью сверхсильного лазерного излучения. Возможно как ускорение непосредственно электромагнитным излучением, так и опосредованное ускорение в ленгмюровской волне, возбуждаемой лазерным импульсом, распространяющимся в плазме низкой плотности. Данным методом экспериментально получены пучки электронов с энергиями, превышающими 1 ГэВ.


1. Прямое ускорение лазерным полем

Прямое ускорение лазерным полем малоэффективно, поскольку в строго одномерной задаче электрон, попадающий в поле лазерного импульса, после выхода из него имеет ту же энергию, что и в начале, то есть требуется проводить ускорение в сильносфокусированных полях, в которых существенна продольная составляющая электрического поля, но в таких полях фазовая скорость волны вдоль оси распространения больше скорости света, поэтому электроны быстро отстают от ускоряющего поля. Чтобы компенсировать последний эффект предлагалось проводить ускорение в газе, где относительная диэлектрическая проницаемость выше единицы, и фазовая скорость уменьшается. Однако в этом случае существенным ограничением является то, что уже при интенсивностях излучения порядка 10 14 Вт/см² газ ионизируется, образуя плазму, что приводит к дефокусировке лазерного пучка. Экспериментально таким методом была продемонстрирована модуляция в 3,7 МэВ пучка электронов, имевших энергию 40 МэВ .


2. Ускорение в плазменной волне

При распространении достаточно интенсивного лазерного импульса в газе происходит его ионизация с образованием неравновесной плазмы, в которой за счёт пондеромоторного воздействия лазерного излучения возможно возбуждения так называемой кильватерной волны - ленгмюровской волны, бегущей вслед импульсу. В этой волне имеются фазы в которых продольное электрическое поле является ускоряющим для электронов, бегущих вместе с волной. Поскольку фазовая скорость продольной волны равна групповой скорости лазерного импульса в плазме, которая лишь немногим меньше скорости света, релятивистские электроны могут находиться в ускоряющей фазе достаточно длительное время, приобретая значительную энергию. Этот метод ускорения электронов был впервые предложен в 1979 году .

При увеличении интенсивности лазерного импульса увеличивается амплитуда возбуждаемой плазменной волны и, как следствие, увеличивается темп ускорения. При достаточно высоких интенсивностях плазменная волна становится нелинейной и, в конце концов, обрушается. При этом возможно возникновение сильно нелинейного режима распространения лазерного импульса в плазме - так называем пузырьковый (или баббл-) режим, в котором позади лазерного импульса образуется полость, похожая на пузырёк, практически полностью лишённая электронов. В этой полости также имеется продольное электрическое поле, способное эффективно ускорять электроны.

Экспериментально в линейном режиме взаимодействия был получен пучок электронов, ускоренный до энергий порядка 1 ГэВ на трассе длиной 3 см. Для компенсации дифракционной расходимости лазерного импульса в этом случае дополнительно использовался волновод в виде тонкого капилляра .

В нелинейном режиме взаимодействия максимально достигнутая энергия составила 1,45 ГэВ на трассе длиной 1,3 см. В эксперименте использовался лазерный импульс мощностью 110 ТВт .


3. Примечания

  1. E. Esarey, P. Sprangle, J. Krall Laser acceleration of electrons in vacuum - dx.doi.org/10.1103/PhysRevE.52.5443 (англ.) // Phys. Rev. E . - 1995. - Т. 52. - С. 5443.
  2. T. Tajima, J. M. Dawson Laser Electron Accelerator - dx.doi.org/10.1103/PhysRevLett.43.267 (англ.) // Phys. Rev. Lett. . - 1979. - Т. 43. - С. 267.
  3. W. P. Leemans et al. GeV electron beams from a centimetre-scale accelerator - www.nature.com/nphys/journal/v2/n10/full/nphys418.html (англ.) // Nature Physics . - 2006. - Т. 2. - С. 696-699.
  4. C. E. Clayton et al. Self-Guided Laser Wakefield Acceleration beyond 1 GeV Using Ionization-Induced Injection - dx.doi.org/10.1103/PhysRevLett.105.105003 (англ.) // Phys. Rev. Lett. . - 2010. - Т. 105. - С. 105003.

Литература

5.1. Научная

  • G. Mourou, T. Tajima, S. V. Bulanov Relativistic optics - rmp.aps.org/abstract/RMP/v78/i2/p309_1 (англ.) // Rev Mod Phys . - 2006. - Т. 78. - С. 309-371.
  • В. С. Беляев, В. П. Крайнов, В. С. Лисица, А. П. Матафонов Генерация быстрых заряженных частиц и сверхсильных магнитных полей при взаимодействии сверхкоротких интенсивных лазерных импульсов с твердотельными мишенями - dx.doi.org/10.3367/UFNr.0178.200808b.0823 // УФН . - 2009. - Т. 178. - С. 823.
  • E. Esarey, C. B. Schroeder, W. P. Leemans Physics of laser-driven plasma-based electron accelerators - rmp.aps.org/abstract/RMP/v81/i3/p1229_1 (англ.) // Rev Mod Phys . - 2009. - Т. 81. - С. 1229-1284.
  • K. Krushelnick, V. Malka Laser wakefield plasma accelerators - dx.doi.org/10.1002/lpor.200810062 (англ.) // Laser & Photon Rev . - 2009. - Т. 4. - С. 42-52.
  • А. В. Коржиманов, А. А. Гоносков, Е. А. Хазанов, А. М. Сергеев Горизонты петаваттных лазерных комплексов - ufn.ru/ru/articles/2011/1/c/ // УФН . - 2011. - Т. 181. - С. 9-32.

5.1.2. Научно-популярная

  • Л. М. Горбунов Зачем нужны сверхмощные лазерные импульсы? - vivovoco.astronet.ru/VV/JOURNAL/NATURE/04_07/LASER.HTM // Природа . - 2007. - № 4.
  • В. Ю. Быченков Пятьдесят лет лазеру. Новый шаг - ускоритель на столе - www.nkj.ru/archive/articles/18951/ // Наука и жизнь . - 2010. - № 12.
скачать
Данный реферат составлен на основе статьи из русской Википедии . Синхронизация выполнена 19.07.11 11:25:29
Похожие рефераты: