Ключевой элемент резервирования систем использование. Резервирование как метод повышения надежности

Резервирование является наиболее эффективным методом достижения наиболее высоких показателей надежности систем.

Резервированием называется способ повышения надежности путем включения резерва. Резервирование позволяет создавать системы, надежность которых может быть выше надежности входящих в него эле­ментов. Резервирование может быть осуществлено различными методами, которым свойственен общий признак - принцип избыточности. Это означает, что наряду с основными элементами, узлами или блоками, выполняющими заданные функции, в системе должны находиться избыточные (резервные) составляющие, которые не являются функционально необходимыми, а предназначены лишь для поддержания некоторого уровня надежности системы. Применение принципа избыточности приводит к усложнению РЭА, увеличению веса, габаритов, стоимости. Классификация методов резервирования представлена на рис. 3.5.

Рис. 3.5. Классификация видов резервирования

В резервированных системах с замещением отказавший элемент заменяется на исправный из числа резервных, причем эта замена чаще всего осуществляется с помощью переключателя (автоматически или вручную).

К достоинствам резервирования замещением относятся:

· отсутствие необходимости регулировки параметров системы после замены отказавшего элемента на исправный;

· резервные элементы могут находиться до момента включения их в систему в облегченном режиме, что способствует сохранению их ресурса и уменьшает потребление электроэнергии.

Однако такие системы имеют недостатки:

· необходимость использования переключателей, являющихся наименее надежными элементами РЭА;

· необходимость создания дополнительных устройств, контролирующих работоспособность, отыскивающих отказавший элемент и заменяющих его на исправный.

Все эти недостатки приводят к тому, что резервирование замеще­нием применяется преимущественно при резервировании сравнительно крупных функциональных узлов сложных систем.

В системах с постоянным включением резерва все элементы (как основные, так и резервные) электрически соединены так, что они находятся в одинаковых режимах. Такой вид резервирования рассчитывается с учетом последствий отказов элементов и видов этих отказов.

Достоинствами такого резервирования является:

· простота осуществления резервирования, следовательно, незначительное увеличение веса, габаритов и стоимости системы;

· отсутствие перерывов в работе системы после возникновения отказов. Постоянное резервирование является единственно возможным в тех системах, когда недопустим даже кратковременный перерыв в работе.

К недостаткам относятся:

· погашенный расход ресурса резервных элементов;

· отказ одного из элементов приводит к изменению режимов работы остальных.

Применение постоянного резервирования ограничивается тем обстоятельством, что одновременная параллельная работа элементов, уз­лов и блоков возможна лишь в некоторых системах. Поэтому постоянное включение резерва наиболее удобно при резервировании сравнительно мелких устройств системы (преимущественно элементов).

Общее резервирование представляет собой резервирование всей системы в целом. Раздельное резервирование состоит в резервировании системы по частям, по отдельным участкам.

Система с общим резервированием (рис. 3.6) функционирует нормально до возникновения отказа последней оставшейся исправной цепи. Пусть m - кратность резервирования, то есть количество резервных цепей. Если каждая j -ая цепь состоит из n элементов с вероятностью исправной работы P ij , то, используя теорему об умножении вероятностей, получаем, что вероятность сложного события, заключающегося в том, что в j -й цепи не произойдет ни одного отказа, равна произведению вероятностей исправной работы каждого элемента цепи, тогда:

Вероятность отказа одной цепи

Тогда вероятность исправной работы системы

Для случая, когда все элементы системы имеют одинаковую надежность, т.е. P ij =P, получаем

Рис. 3.6. Общее резервирование

Рис. 3.7. Раздельное резервирование

Система с раздельным резервированием (рис. 3.7) будет нормально работать при сохранении работоспособности хотя бы одного элемента в каждом из n - звеньев, вероятность отказа i -го звена

где q ij - вероятность отказа j -го элемента i -го звена.

Вероятность исправной работы системы с раздельным резервирова­нием P с равна произведению вероятностей исправной работы P i всех n - звеньев

Для случая одинаковых по надежности элементов P ij =P имеем

Смешанное резервирование (рис. 3.8) является комбинацией общего и раздельного, и расчет надежности при смешанном резервировании производится с помощью формул для общего и раздельного резервирования.

Рис. 3.8. Смешанное резервирование

Рис. 3.9. Эффективность различных видов резервирования

Для сравнения эффективности применения различных типов резервирования предположим, что имеется система, состоящая из n последовательно включенных одинаковых по надежности элементов, обладающих надежностью P =0,9 .

Как следует из рис. 3.9, на котором отложены рассчитанные значения соответствующих вероятностей, наибольшей эффективностью облададает раздельное резервирование, причем, чем больше количество элементов n , тем больше преимущество. Однако необходимо помнить о том предположении, которое было использовано при выводе формулы надежности резервированных систем, а именно - здесь подсчитывалась надежность системы с постоянно включенным резервом.

Примерами такого включения могут служить:

· системы, состоящие из нескольких передатчиков, работающих на общую антенну;

· радиолокационные станции, содержащие несколько параллельно работавших индикаторных устройств;

· параллельное электрическое включение нескольких элементов (резисторов, конденсаторов и т.п.).

Найдем величину среднего времени исправной работы T с системы, состоящей из элементов, включенных параллельно, один из которых является основным, а второй резервным.

Пусть интенсивности отказов этих элементов соответственно равны λ 1 и λ 2 . Тогда при экспоненциальном законе надежности вероятности их безотказной работы к моменту времени t равны

; и

Для системы

Как известно,

После подстановки пределов интегрирования получаем

Если элементы равнонадежны, т.е. λ 1 = λ 2 = λ , то

где T 0 – среднее время исправной работы одного элемента.

Для системы, состоящей из трех параллельно включенных однотипных элементов, находим

В общем случае при кратности резервирования m

Из последнего выражения следует, что увеличение кратности приводит к уменьшению вклада нового резервного элемента в среднее время исправной работы системы. Это явление объясняется тем, что при постоянном включении резервные цепи расходуют свой запас рабо­тоспособности одновременно с основной цепью.

Резервирование замещением предполагает включение резервных цепей только после отказа основной цепи. Включение резервных цепей может осуществляться как вручную, так и автоматически. В любом случае необходимо наличие индикатора отказа, управляющего устройства и переключателя. В качестве последнего обычно используются реле или электронные переключатели.

На рис. 3.10 изображена система, где

Б 1 …Б м – блоки основной и резервной цепей,

n 11 …n м1 – переключатели входных цепей,

n 12 …n м2 – переключатели выходных цепей,

У 1 …Б м- 1 – индикаторные и управляющее устройства.

Рис. 3.10. Резервирование замещением

При возникновении отказа блока Б 1 индикатор отказа подает сигнал на управитель У 1 , который отключает Б 1 по входу и выходу, подключая блок Б 2 . После возникновения отказа блока Б 2 система ведет себя аналогично.

Отказ любого из переключателей приводит к отказу резервной цепи, в которую он включен (при условии, что отказ переключателя не выводит из строя всю резервированную систему). Поэтому переключатель при расчете надежности рассматривается как элемент, соединенный со своим блоком последовательно (по надежности).

Резервированием называют способ обеспечения надёжности системы за счёт использования дополнительных средств и возможностей, избыточных по отношению к минимально необходимым при выполнении требуемых функций. Резервирование может использоваться не только для повышения надёжности, но и для повышения точности, устойчивости, достоверности и др. Иногда вместо термина «резервирование» используется словосочетание «введение избыточности». Между этими понятиями есть много общего, но есть и различия, поэтому их нельзя воспринимать как синонимы. Под избыточностью понимают превышение веса, габаритов, производительности, стоимости и других технико-экономических показателях изделия над минимально необходимыми. Ясно, что введение избыточности не означает автоматического улучшения показателей надёжности, достоверности и др. Чтобы улучшение произошло, необходимо соответствующим образом управлять избыточными ресурсами, создать определённые условия и правила их использования, а в некоторых случаях и предусмотреть специальные технические и программные средства актуализации этих ресурсов. Если это выполнено, то введение избыточности становится резервированием, и тогда оба понятия можно рассматривать как синонимы.

Виды и методы резервирования довольно разнообразны и зависят как от типа характеристик, которые должны быть улучшены, так и от класса систем, в которых резервирование используется. Для повышения надёжности систем управления применяют структурное, функциональное, временное, информационное, алгоритмическое резервирование. Рассмотрим подробно эти виды резервирования.

Структурное резервирование. Структурным резервированием (СР) называют способ повышения надёжности технических средств, состоящий в применении в системе дополнительных (резервных) элементов, которые не являются необходимыми для выполнения возложенных на систему функций, но используются системой после отказа основных элементов. Характерной особенностью СР является то, что в идеально надёжной системе все резервные элементы могут быть удалены из системы без какого-либо ухудшения качества её функционирования. Они необходимы только тогда, когда появляется принципиальная возможность отказа основных элементов.

В отличие от последовательной системы, в системе со СР не любой отказ элемента приводит к отказу системы, так как работа системы поддерживается за счёт перестройки (реконфигурации) структуры и подключения резервных элементов. Отказ системы наступает только тогда, когда нарушение работоспособности в одном из основных элементов не удаётся компенсировать своевременным подключением работоспособного резервного элемента (группы элементов).

Замечательным свойством СР, объясняющим его широкое применение, является то, что введение резервной аппаратуры, увеличивая суммарную интенсивность отказов элементов (основных и резервных), существенно уменьшает интенсивность отказов системы. Как следствие, улучшаются и другие показатели надёжности. И, наоборот, в отличие от последовательной системы, где любое упрощение полезно с точки зрения надёжности, в резервированной системе упрощение путём удаления резервных элементов ухудшает показатели надёжности. При наличии потока отказов элементов СР позволяет обеспечит непрерывную работу системы в течение промежутка времени, во много раз превосходящего среднюю наработку до отказа нерезервированной системы. В системах, состоящих из нескольких одновременно работающих устройств одинаковой производительности, в которых отказ одного из устройств снижает общую производительность системы, СР стабилизирует производительность системы.

Для эффективного использования СР иногда необходимо привлекать другие виды резервирования, например временное, для того чтобы гарантировать своевременное обнаружение отказов и своевременное подключение резервной аппаратуры. Для этих же целей используются информационное и алгоритмическое резервирование.

Методы структурного резервирования.

МСР различаются:

По масштабу резервирования;

Соотношению количества основных и резервных элементов;

Способу включения резерва;

Режиму работы резервных элементов;

Способам подключения резервной аппаратуры.

Резервирование называют общим, если резервируется вся последовательная система, раздельным (поэлементным), если резервируются отдельные элементы последовательной системы, и групповым, если резервируется группа элементов системы. Совокупность основных и резервных элементов, замещающих друг друга при отказе одного из элементов, называют резервированной группой. При общем резервировании в системе имеется только одна резервированная группа, при раздельном - столько резервированных групп, сколько элементов в последовательной системе. При групповом резервировании число резервированных групп имеет промежуточное значение. Система со структурным резервом отказывает тогда, когда отказывает хотя бы одна её резервированная группа. В структурной надёжностной схеме резервированные группы соединены последовательно, значит вероятность возникновения отказа резервированной группы может быть определена как:

Скользящее резервирование или с неоднозначным соответствием применят тогда, когда все основные элементы системы одинаковы. Резервные элементы не закрепляются за определёнными основными элементами, а могут заменить любой из них.

Основным параметром структурного резервирования является кратность k, представляющая собой соотношение между общим числом однотипных элементов n и числом r необходимых для функционирования системы работающих элементов:

Значение k может быть целым, если, и дробным, если В последнем случае дробь сокращать нельзя.

По способу включения резерва различают:

Резервирование с постоянно включённым резервом;

Резервирование с включением замещением.


Рис. 4

Схемы общего (а) и поэлементного (б) постоянного резервирования приведены на рис. 4. При постоянном включении основные и резервные элементы (подсистемы) функционируют одновременно, начиная с момента включения системы (рис. 4, а и б). Постоянное резервирование является пассивным. При включении замещением (рис. 4, в и г), которое является активным резервированием, резервные элементы (подсистемы) включаются в работу только после отказа основных. До этого они находятся в состоянии хранения (ненагруженный резерв), частично включены (облегчённый резерв) или полностью включены (нагруженный резерв). При нагруженном резерве резервные элементы имеют интенсивность отказов такую же, как и основные элементы, т.е.

При ненагруженном резерве интенсивность отказов резервных элементов во много раз меньше, чем интенсивность отказов основных элементов, так что в расчётах можно считать. Облегчённый резерв занимает промежуточное положение, когда

Замещение отказавшего основного элемента резервным можно проводить вручную, полуавтоматически и автоматически. В первом случае не требуется никакой аппаратуры переключения, но время переключения довольно велико. При автоматическом переключении используют специальный автомат переключения резерва. Он уменьшает время переключения до нескольких секунд или долей секунд, однако сам обладает конечной надёжностью. При полуавтоматическом переключении часть функций выполняет автомат, а другую - оператор.

Поскольку структурное резервирование сопряжено с дополнительными затратами на резервные элементы, то последние должны окупаться за счёт повышения надёжности системы и снижения потерь от её отказов. Наиболее простыми для определения показателями эффективности резервирования являются следующие:

где - выигрыш за счёт повышения средней наработки до отказа резервированной системы по сравнению с наработкой нерезервированной системы; - аналогичные показатели по повышению вероятности безотказной работы и снижению вероятности отказа. Резервирование эффективно, если значение показателей дольше единицы.

Временное резервирование (резервирование времени)

Временное резервирование (ВР) - это способ повышения надёжности, при котором системе в процессе функционирования предоставляется возможность израсходовать некоторое время, называемое резервным, для восстановления технических характеристик. Резерв времени можно израсходовать на переключение структурного резерва, обнаружение и устранение отказов, повторение работ, обесцененных отказами, ожидание загрузки в работоспособном состоянии. Можно указать несколько источников резервного времени.

Резерв времени может создаваться за счёт увеличения времени, выделяемого системе для выполнения задания и называемого оперативным временем. Он возникает и при создании запаса производительности всей системы или её отдельных устройств, причём без увеличения оперативного времени. Запас производительности, в свою очередь, возникает при увеличении быстродействия элементов или при комплексировании нескольких устройств (систем) одинаковой или различной производительности для выполнения общего задания.

В системах, результат работы которых оценивается объёмом производимого (обрабатываемого) продукта, резерв времени можно создать за счёт внутренних запасов выходной продукции. В АСОИУ такой продукцией является информация, в системах энергоснабжения - электрическая энергия, в системах водоснабжения - водные ресурсы, на машиностроительных предприятиях - детали, узлы, приборы и т.д. Для хранения запасов предусматриваются специальные накопители: запоминающие устройства, аккумуляторные батарее, резервуары, бункеры и др. Пока запас не исчерпан, продукция поступает на выход системы, и смежные с ней системы, не «замечая» частичного или даже полного прекращения её функционирования, считают её работоспособной.

Ещё одним источником резерва времени является функциональная инерционность протекающих в системе процессов. В работе многих технических систем допускаются незначительные перерывы, протекающие без потери качества функционирования (пока управляемые параметры находятся в пределах допусков), которые можно использовать для восстановления её работоспособности. Такими свойствами обладают АСУ ТП, системы термостатирования, диспетчерского управления, жизнеобеспечения летательных и других подвижных аппаратов и др.

Для систем с ВР нарушение работоспособности не обязательно сопровождается отказом системы даже при последовательном соединении её элементов, так как есть возможность восстановить работоспособность за резервное время. Отказ СВР - событие, заключающееся в нарушении работоспособности, вызывающем недопустимые последствия или неустранённом за допустимое время. Надёжность СВР оценивается по результатам выполнения установленных временных ограничений по всей траектории функционирования или по результатам выполнения некоторого задания.

Задание задаётся:

Последовательностью и объёмом работ;

Установленными моментами начала и завершения этапов работ;

Ограничениями на использование различных ресурсов, которыми располагает система;

Ограничениями на взаимопомощь и взаимодействие различных устройств.

Поэтому различают задания:

Одноэтапные;

Многоэтапные;

Бригадные;

Индивидуальные (автономные);

Групповые;

Поступающие до начала работы системы (по расписанию);

Поступающие в процессе работы системы (в случайные моменты времени по заявкам). Выполнение задания - это событие, заключающееся в завершении заданного объёма работ с установленными ограничениями на время выполнения всех работ и отдельных их этапов и при выполнении требований к качеству и ритмичности работы системы. Нарушение установленных требований и ограничений рассматривается как срыв функционирования. Поэтому, отказ СВР можно определить как событие, приводящее немедленно или с некоторой задержкой к срыву выполнения задания, к срыву функционирования.

Для установления признаков отказа СВР необходимо вести статистику потерь времени, проводить специальные измерения, например, запасов продукции в накопителях. Структурно в обобщённой форме СВР может рассматриваться как совокупность исходного объекта и резерва времени (рис. 5).

После отказа системы начинает действовать резерв времени. Отказы системы могут различаться по последствиям. Если отказ вызывает лишь задержку выполнения задания, но не приводит к повторению работ, то его называют необесценивающим или неразрушающим. В противном случае его называют обесцениваищим или разрушающим. Обесценивание выполненных работ может быть полным или частичным. В связи с наличием обесценивающих отказов всю наработку системы разделяют на полезную и обесцененную. Полезной является наработка, не обесцененная отказами системы, а обесцененная наработка - это наработка, не включённая в полезную. Резервирование времени широко используется в компьютерах, вычислительных сетях, системах связи. Особенно эффективным является применение ВР для борьбы со сбоями и помехами. Его часто используют и для повышения эффективности других видов резервирования.

Рис. 5

Методы временного резервирования

На методы временного резервирования частично может быть распространена классификация методов структурного резервирования. Среди методов ВР можно выделить общее, раздельное, групповое, с целой и дробной кратностью. При общем резервировании созданный резерв времени может быть использован любым элементом системы. При раздельном ВР каждый элемент обеспечивается собственным резервом времени, который не может быть использован другими элементами. При групповом ВР резерв времени предназначается для любого элемента, входящего в данную группу, и не может быть использован элементами вне группы. Кратность ВР - это отношение величины резерва времени к минимальному времени выполнения задания. Оно может быть целым или дробным.

По возможности увеличения в процессе функционирования системы с резервом времени (СВР) различают непополняемый и пополняемый резерв времени. Непополняемый резерв времени создаётся заранее, до начала работы, и не возрастает при выполнении задания. При работоспособном состоянии всех элементов системы текущее значение резерва времени не меняется, а при отказах элементов может уменьшаться скачкообразно (при обесценивающих отказах) или в линейной зависимости от времени при неработоспособном состоянии системы. Пополняемый резерв возрастает по некоторому закону при работоспособном состоянии всей системы, а также во время восстановления работоспособности некоторых отказавших элементов. Мгновенно пополняемый резерв восстанавливается до исходного уровня скачком сразу же после окончания ремонта. В одной и той же системе могут использоваться оба вида резерва времени - тогда его называют комбинированным или смешанным. При раздельном или групповом резервировании возможны дополнительные ограничения на способ пополнения и использования резерва времени. В этом случае его называют резервом со сложными ограничениями.

Как и при структурном резервировании, по типу структуры различают СВР с последовательным, параллельным, последовательно-парал-лельным соединением элементов, а также СВР с сетевой структурой. Однако здесь имеются некоторые особенности. Так, существуют две разновидности последовательного соединения: основное и многофазное. При основном соединении в системе отсутствуют накопители продукции (рис. 6, а).


Рис. 6

При многофазном соединении в системе есть по крайней мере один накопитель. Число фаз определяют как число накопителей, увеличенное на единицу (рис. 6,б). Параллельное соединение также имеет две разновидности: резервное и многоканальное. При резервном соединении имеются чёткие различия основных и резервных элементов. Работоспособные основные элементы находятся в работе. Резервные элементы, вне зависимости от режима (нагруженного, ненагруженного, облегчённого), не включаются в работу, пока работоспособны основные элементы (рис. 6,в). При многоканальном соединении не различают основные и резервные элементы. Все параллельно включённые элементы участвуют в работе, и результаты их работы так или иначе используют при формировании результатов работы всей системы. Если элементы характеризуются производительностью (пропускной способностью, быстродействием, мощностью и пр.), то в системе с многоканальным соединением элементов может создаваться запас производительности, в отличие от системы с минимально необходимым числом элементов (рис. 6,г). Примеры СВР с последовательно-параллельным и параллельно-последовательным соединением элементов приведены на рис. 6, д-з. Рекурсивно могут быть построены и более сложные структуры.

Функциональное резервирование

Функциональным резервированием (ФР) называют способ повышения надёжности, использующий свойство технических систем (а также живых организмов, биологических и социальных систем) обеспечивать при отказах элементов безотказное функционирование за счёт перераспределения функций и более интенсивной работы элементов, выполнявших до отказа только свои основные функции. Выполнять дополнительные функции они способны лишь временно, и это может сопровождаться некоторым ухудшением общего качества работы, но в допустимых пределах. При ФР в системе нет «лишних» элементов - они все необходимы для выполнения требуемого набора функций. Характерной особенностью этого вида резервирования является как раз то, что даже из идеально надёжной системы нельзя удалить ни одного элемента, не вызвав перераспределения функций элементов и увеличения их функциональной нагрузки уже на постоянной основе, возможно, с переходом на более тяжёлые режимы работы.

Применение ФР обычно сопровождается введением информационной и алгоритмической избыточности.

Информационное резервирование

В современной технике управления и информационно-вычис-лительной технике информационная избыточность и информационное резервирование используются для улучшения многих характеристик. Оно влияет на показатели надёжности, достоверности обработки и передачи информации, точности вычислений, производительности. Способы введения информационной избыточности весьма разнообразны. Информационная избыточность существует в виде избыточности внутреннего информационного языка устройств обработки и передачи данных, в виде избыточности помехоустойчивых кодов. Её можно вводить и как избыточность массивов данных в составе файла данных, и как избыточность файловой структуры в памяти ЭВМ. Можно с уверенностью сказать, что без информационной избыточности в той или иной форме невозможно представить ни один информационный процесс в АСОИУ. Часто без информационной избыточности нельзя использовать другие виды резервирования. Не останавливаясь на косвенных способах влияния информационной избыточности на показатели надёжности, отметим лишь основные способы прямого влияния. Информационная избыточность (ИИ) уменьшает:

Поток отказов системы, так как на все отказы элементов становятся отказами системы; если последствия отказа элемента удаётся устранить за счёт ИИ, то он не считается отказом системы;

Время восстановления за счёт уменьшения объёма работ, обесцененных отказом; при этом уменьшается время, затрачиваемое на повторение обесцененной части работ, и увеличивается полезная наработка;

Время восстановления за счёт сокращения времени обнаружения и поиска неисправности.

Алгоритмическое резервирование (АР)

Для выполнения стоящих перед системой задач необходимо не только иметь некоторый объём информации о характере и условиях выполнения задачи, о процессах, происходящих в системе и окружающей среде, но и обеспечить обработку этой информации в соответствии с алгоритмами функционирования. Каждой системе можно сопоставить алгоритм минимальной сложности. Все прочие алгоритмы, содержащие дополнительное количество операторов, по сравнению с минимальным алгоритмом будут избыточными. АР вводится для преодоления помех и случайных возмущений, вызванных, в частности, отказами элементов аппаратуры. Оно используется во взаимодействии с другими видами резервирования и в ряде случаев является необходимым условием их реализации.

4 Расчет надежности невосстанавливаемых систем с постоянным резервом

Общее постоянное резервирование с целой кратностью. Вероятность отказа Q p параллельно работающих т элементов при r = 1 определяется выражением (2), откуда для равнонадежных элементов

Чем меньше вероятность отказа каждого из элементов, тем выше эффективность постоянного резервирования. Так, если q = 0,1 и 0,01, а k = 1, то выигрыш в снижении вероятности отказа при резервировании составит соответственно 10 и 100. Рассмотрим связь показателей надежности группы резервированных элементов, кратности резервирования k и длительности работы элементов t при экспоненциальном законе распределения времени их безотказной работы. Если интенсивность отказов каждого из элементов, то согласно (1.12), (1.21), (1.22) имеем

Графики изменения P P (t/) и р (t/)/ в зависимости от кратности резервирования и длительности работы системы представлены на рис. 7. Они показывают, что постоянное резервирование эффективно на начальном участке работы системы, когда t .

Для группы резервированных элементов средняя наработка до отказа

Рис. 7

Работа рассматриваемой группы резервированных элементов характеризуется последовательным переходом по мере возникновения отказов от т работающих элементов к т-1, т-2 и далее до одного, отказ последнего приводит к отказу всей группы. Эту последовательность переходов иллюстрирует график, представленный на рис. 8. В случайные моменты времени t 1 , t 2 и т. д. происходят отказы элементов, число работающих элементов n(t) постепенно снижается. Поскольку на каждом из участков T 1 = t 1 , T 2 = t 2 - t 1 и т. д. имеет место совместное функционирование т, т-1 и т. д. элементов, то случайные интервалы времени T 1 , Т 2 ,...,Т т имеют экспоненциальное распределение с интенсивностями отказов соответственно m, (т-1), ..., и средней продолжительностью 1 = 1/(m), 2 = 1/[(т-1)], = 1/. Поскольку, то значение средней наработки до отказа группы резервированных элементов определяется как 1/(m)+1/[(т-1)]+ 1/.

Рис. 8

Резервирование двухполюсных элементов. В большинстве случаев резервные элементы подключают параллельно основному. Однако при дифференциации видов отказов резервирование по каждому из них может осуществляться при различных способах включения резервных элементов. Наиболее характерным в этом отношении является резервирование элементов при отказах типа «обрыв» и «короткое замыкание» (КЗ). Для двухполюсных элементов релейного типа, имеющих два возможных состояния 1 и 0, этим отказам соответствует несрабатывание при наличии управляющего сигнала и ложное срабатывание при отсутствии последнего.

При последовательном соединении релейных элементов (рис. 9,а) несрабатывание любого из элементов приводит к отсутствию цепи между точками а и b. Таким образом, для этого вида отказов последовательное соединение релейных элементов является основным. Для отказов типа ложное срабатывание последовательное соединение является резервным, поскольку этот вид отказа цепи будет иметь место только при отказе двух элементов.

Рис. 9

Из рассмотренного вытекает, что одному и тому же соединению элементов для этих видов отказов соответствуют две структурные схемы. При последовательном соединении релейных элементов осуществляется резервирование по отказам типа КЗ. Если вероятность отказов этого типа для каждого элемента q, то B a = q/q 2 = q -1 . Для отказов типа обрыв, т. е. последовательное включение релейных элементов приводит к повышению вероятности возникновения отказов типа обрыв цепи. При параллельном соединении релейных элементов (рис. 9,б) осуществляется резервирование по отказам типа обрыв с эффективностью B Q = 1/q, а по отказам типа КЗ надежность снижается.

Резервирование с дробной кратностью. При резервировании с дробной кратностью система может функционировать, если из п однотипных работающих параллельно элементов в работоспособном состоянии находятся r. Система отказывает, если число отказавших элементов z составляет. Используя метод перебора состояний, определим вероятность отказа такой системы

В каждом из состояний число работоспособных элементов составляет п - z, а вероятность этого состояния, тогда

где C n z = n!/ - число сочетаний из п элементов по z, причем 0! = 1; =1. При <<1 .

При экспоненциальном законе распределения времени безотказной работы и интенсивностях отказов каждого из элементов

Поскольку без резерва система включает r работающих элементов, то вероятность отказа исходной системы при оценке эффективности резервирования составляет 1-(1-q) r . Так, если система включает три параллельно работающих элемента и r = 2, то при q = 0,1, k = 1/2, т = 2 согласно (11)

Разновидностью постоянного резервирования с дробной кратностью является резервирование с голосованием по большинству (мажоритарное). Структурная схема системы, использующей это способ резервирования, представлена на рис. 10. Параллельно работает нечетное число элементов, их выходные сигналы х 1 , х 2 ,..., х п поступают на вход элемента голосования Г (кворум-элемент), выходной сигнал которого совпадает с сигналом большинства элементов. В системах с таким способом резервирования обычно используются три элемента, реже пять. Для работоспособного состояния системы необходима правильная работа большинства элементов. Отказ системы наступает при числе отказов z m = (n + 1)/2.

Рис. 10

Рис. 11

Вероятность отказа системы с мажоритарным резервированием при n = 3 и n = 5 равнонадежных элементах согласно (10) составляет соответственно:

Q 3 = 3q 2 - 2q 3 ; Q 5 = 10q 3 - 15q 4 + 6q 5 . (12)

Эффективность этого способа резервирования при n=3 составляет B Q = q/(3q 2 - 2q 3) = 1/(3q - 2q 2). Если q < 0,5, резервирование эффективно, при q = 0,5 надежность системы при резервировании не изменяется, а при q > 0,5 резервирование приводит к снижению надежности.

Мажоритарное резервирование широко применяют в системах защиты реакторов и теплотехнического оборудования. Так, система защиты от превышения давления в барабане котла, изображенная на рис. 11,а, включает электроконтактные манометры M1, M2, M3, силовое реле СР и электрический клапан сброса давления К. Система защиты срабатывает при замыкании контактов любых двух манометров из трех. Схема соединения контактов манометров представлена на рис. 11,б. Ток через обмотку силового реле СР протекает при замыкании любых двух пар контактов, специального кворум-элемента в таких системах не требуется. Отказы вида «ложное срабатывание» или «несрабатывание» в системе возникают при соответствующих отказах двух манометров из трех, т. е. этот способ резервирования равнонадежен для обоих видов отказов.


Рис. 12

Поэлементное резервирование. Надежность системы, содержащей группы элементов или отдельные элементы с поэлементным резервированием, рассчитывают с использованием формул общего постоянного резервирования (1), (2), (10). Так, если система состоит из п участков с поэлементным резервированием целой кратностью k i , то вероятность безотказной работы системы

где q ij - вероятность отказа j-го элемента, входящего в i-й участок резервирования.

Для сопоставления эффективности общего и поэлементного резервирования сравним вероятности отказа двух систем, включающих одинаковое n(k+1) число равнонадежных элементов (рис. 12). В первом случае (рис. 12, а) осуществляется общее резервирование системы из п элементов кратностью k, во втором случае (рис. 1 2, б) при поэлементном резервировании каждый из п элементов системы имеет k резервных.

Вероятность отказа системы с общим резервированием

Считая, что вероятность отказа каждого из элементов q<<1 и (1- q) n 1 - nq, получаем. Для раздельного резервирования, используя (13) и считая q<<1, получаем

Эффективность поэлементного резервирования по сравнению с общим составит n k . С увеличением глубины п и кратности k резервирования его эффективность растет. Использование поэлементного резервирования сопряжено с введением дополнительных подключающих элементов, имеющих ограниченную надежность. В связи с этим имеется оптимальная глубина резервирования п опт, при n>п опт эффективность резервирования снижается.

Постоянное резервирование заключается в том, что отказ одного или нескольких элементов резервированной системы, в целом, не влияет на ее работу. Элементы соединены постоянно, перестроения схемы не происходит. При создании таких систем необходимо учитывать различные последствия, к которым приводит отказ элементов.

Схема этого метода резервирования представлена на рис. 1

Резервируемые элементы соединены параллельно с основным в течение всего периода работы. Элементы соединены постоянно. Отказавшие элементы не отключаются. Перестройки схемы не происходит.

ь Преимуществом данной схемы является ее простота и отсутствие перерывов в работе.

ь Недостатком - повышенный расход ресурса резервных элементов, т.к. они находятся в рабочем режиме постоянно.

Такой метод наиболее целесообразен при резервировании небольших элементов (реле, сопротивлений, небольших схем и т.д.)

Различают общее и раздельное резервирование.

Общее резервирование - это резервирование, при котором резервируемым элементом является объект в целом.

Схема общего резервирования представлена на рис. 2.

Раздельное резервирование - это резервирование, при котором резервируемыми являются отдельные элементы или их группы. Схема раздельного резервирования представлена на рис. 3.


В первом случае для отказа основной системы достаточно, чтобы в каждой цепи отказал один элемент. Во втором случае отказ системы наступает при отказе, какого либо элемента из основной цепи и всех резервных.

С целью сравнения различных методов резервирования и выбора оптимального с точки зрения получения наиболее надежной системы, либо количества элементов, либо другого критерия производится расчет и сравнение различных видов резервирования.

Сравним два вида резервирования системы, общее и раздельное. Примем, что все элементы одинаковые и имеют вероятность отказа равную q .

ь Тогда для общего резервирования.

Вероятность отказа основной системы определяется следующим образом

Вероятность отказа резервированной системы Q ор будет равна

ь В случае раздельного резервирования.

Если вероятность отказа очень мала то, разложив правые части формул в ряды по степеням n и пренебрегая членами с q в степени выше единицы, получим.

Классификация методов резервирования систем

Достигнутый в настоящее время уровень надежности элементной базы электроники, радиотехники, механических элементов, электротехники характеризуется значениями интенсивности отказов λ=10 -6 ...10 -7 1/ч. В ближайшем будущем следует ожидать повышения этого уровня до λ= 10 -8 1/ч. Это даст возможность поднять наработку на отказ системы, состоящей из N = 10 6 элементов, до значения 100 ч, что явно недостаточно. Необходимая надежность сложных систем может быть достигнута только при использовании различных видов резервирования .

Резервирование – это одно из основных средств обеспечения заданного уровня надежности (особенно безотказности) объекта при недостаточно надежных элементах.

В соответствии с ГОСТ 27.002-89 резервированием называется применение дополнительных средств и (или) возможностей с целью со­хранения работоспособного состояния объекта при отказе одного или нескольких его элементов. Таким образом, резервирование – это метод повышения надежности объекта путем введения избыточности. В свою очередь, избыточность - это дополнительные средства и (или) возможности, сверхминимально необходимые для выполнения объектом задан­ных функций. Задачей введения избыточности является обеспечение нормального функционирования объекта после возникновения отказа в его элементах.

Существуют разнообразные методы резервирования. Их целесообразно разделять по следующим признакам (рисунок 4.7): вид резервирования, способ соединения элементов, кратность резервирования, способ включения резерва, режим работы резерва, восстанавливаемость резерва.

Рисунок 4.7 – Классификация методов резервирования

Структурное резервирование, иногда называемое аппаратурным (эле­ментным, схемным), предусматривает применение резервных элементов структуры объекта. Суть структурного резервирования заключается в том, что в минимально необходимый вариант объекта вводятся дополнительные элементы. Элементы резервированной системы носят следующие названия. Основной элемент - элемент структуры объекта, необходимый для выполнения объектом требуемых функций при отсутствии отказов его элементов. Резервный элемент - элемент объекта, предназначенный для выполнения функций основного элемента в случае отка­за последнего.

Определение основного элемента не связано с понятием минималь­ности основной структуры объекта, поскольку элемент, являющийся основным в одних режимах эксплуатации, может служить резервным в других условиях.

Резервируемый элемент - основной элемент, на случай отказа, кото­рого в объекте предусмотрен резервный элемент.

На рисунках 4.8 – 4.10 приведены схемы соединения основных и резервных элементов, так называемым параллельным соединением элементов. Системой с параллельным соединением элементов называется такая система, которая отказывает только в случае отказа всех ее элементов .

Рисунок 4.8 – Пример параллельного соединения элементов

а – принципиальная схема, б – расчетная схема

Рисунок 4.9 – Пример параллельно-последовательного соединения элементов СУХТП

а - функциональная схема, б – расчетная схема

Рисунок 4.10 – Пример мостового соединения элементов

Временное резервирование связано с использованием резервов време­ни. При этом предполагается, что на выполнение объектом необходимой работы отводится время, заведомо большее минимально необходимого. Резервы времени могут создаваться за счет повышения производительности объекта, инерционности его элементов и т.д.

Информационное резервирование - это резервирование с применени­ем избыточности информации. Примерами информационного резервирования являются многократная передача одного и того же сообщения по каналу связи; применение при передаче информации по каналам связи различных кодов, обнаруживающих и исправляющих ошибки, которые появляются в результате отказов аппаратуры и влияния помех; введение избыточных информационных символов при обработке, передаче и отображении информации. Избыток информации позволяет в той или иной мере компенсировать искажения передаваемой информации или устранять их.

Функциональное резервирование - резервирование, при котором за­данная функция может выполняться различными способами и техническими средствами. Например, функция передачи информации в АСУ может выполняться с использованием радиоканалов, телеграфа, телефона и других средств связи. Поэтому обычные усредненные показатели надежности (средняя наработка на отказ, вероятность безотказной работы и т.п.) становятся малоинформативными и недостаточно пригодными для ис­пользования в данном случае. Наиболее подходящие показатели для оценки функциональной надежности: вероятность выполнения данной функции, среднее время выполнения функции, коэффициент готовности для выполнения данной функции.

Нагрузочное резервирование - это резервирование с применением нагрузочных резервов. Нагрузочное резервирование, прежде всего, за­ключается в обеспечении оптимальных запасов способности элементов выдерживать действующие на них нагрузки. При других способах нагру­зочного резервирования возможно введение дополнительных защитных или разгружающих элементов.

Перечисленные виды резервирования могут быть применены либо к системе в целом, либо к отдельным элементам системы или к их группам. В первом случае резервирование называется общим, во втором – раздельным. Сочетание различных видов резервирования в одном и том же объекте называется смешанным.

По способу включения резервных элементов различают постоянное, динамическое, резервирование замещением, скользящее и мажоритарное резервирование. Постоянное резервирование - это резервирование без перестройки структуры объекта при возникновении отказа его элемента. Для постоянного резервировании существенно, что в случае отказа основного элемента не требуется специальных устройств, вводящих в действие резервный элемент, а также отсутствует перерыв в работе (рисунки 4.11 – 4.13). Постоянное резервирование в простейшем случае представляет собой параллельное соединение элементов без переключающих устройств .

Рисунок 4.12 - Раздельное резервирование с постоянно включенным резервом Рисунок 4.11 – Общее резервирование с постоянно включенным резервом

Рисунок 4.13 – Смешанное резервирование с постоянно включенным резервом

Динамическое резервирование - это резервирование с перестройкой структуры объекта при возникновении отказа его элемента. Динамическое резервирование имеет ряд разновидностей.

Резервирование замещением - это динамическое резервирование, при котором функции основного элемента передаются резервному только после отказа основного элемента. Включение резерва замещением (рисунки 4.14, 4.15) обладает следующими преимуществами:

– не нарушает режима работы резерва;

– сохраняет в большей степени надежность резервных элементов, так как при работе основных элементов они находятся в нерабочем состоянии;

– позволяет использовать резервный элемент на несколько основных элементов.

Рисунок 4.14 – Общее резервирование с включением резерва замещением Рисунок 4.15 - Раздельное резервирование с включением резерва замещением

Существенным недостатком резервирования замещением является необходимость наличия переключающих устройств. При раздельном ре­зервировании число переключающих устройств равно числу основных элементов, что может сильно понизить надежность всей системы. Поэтому резервировать замещением выгодно крупные узлы или всю систему, а во всех других случаях - при высокой надежности переключающих устройств.

Скользящее резервирование - это резервирование замещением, при котором группа основных элементов объекта резервируется одним или несколькими резервными элементами, каждый из которых может заменить любой отказавший основной элемент в данной группе (рисунок 4.16) .

Рисунок 4.16 – Скользящее резервирование однотипными (а) и неоднотипными (б) элементами

В системах управления нашло широкое применение мажоритарное резервирование (с использованием «голосования»). Этот способ основан на применении дополнительного элемента, называемого мажоритарным, или логическим, элементом. Логический элемент позволяет вести сравнение сигналов, поступающих от элементов, выполняющих одну и ту же функцию. Если результаты совпадают, то они передаются на выход устройства .

На рисунке 4.17 изображено резервирование по принципу «2 из 3», т.е. любые два совпадающих результата из трех считаются истинными и проходят на выход устройства. По такому принципу построены многие схемы подсистем систем управления и защиты (СУЗ). Можно применять соотношения «3 из 5» и др. Главное достоинство этого метода – обеспечение повышения надежности при любых видах отказов элементов и повышение достоверности информационно-логических объектов.

Рисунок 4.17 – Мажоритарное резервирование

Степень избыточности характеризуется кратностью резервирования. Кратность резерва - это отношение числа резервных элементов объекта к числу резервируемых ими основных элементов, выраженное несокращенной дробью. Резервирование с целой кратностью имеет место, когда один основной элемент резервируется одним или более резервны­ми элементами.

Резервирование с дробной кратностью – это такое резервирование, когда два и более однотипных элементов резервируются одним и более резервными элементами. Наиболее распространенным вариантом ре­зервирования с дробной кратностью является такой, когда число основных элементов превышает число резервных. Резервирование, кратность которого равна единице, называется дублированием.

В зависимости от режима работы резерва различают нагруженный, облегченный и ненагруженный резервы. Нагруженный резерв – это резерв, который содержит один или несколько резервных элементов, находящихся в режиме основного элемента. При этом принимается, что элементы нагруженного резерва имеют тот же уровень безотказности, долговечности и сохраняемости, что и резервируемые ими основные элементы объекта. Облегченный резерв – это резерв, который содержит один или несколько резервных элементов, находящихся в менее нагруженном режиме, чем основной. Элементы облегченного резерва обладают, как правило, более высоким уровнем безотказности, долговечности и сохраняемости, чем основные элементы. Ненагруженный резерв - это резерв, который содержит один или несколько резервных элементов, находящихся в ненагруженном режиме до начала выполнения ими функций основного элемента. Для элементов ненагруженного резерва условно полагают, что они никогда не отказывают и не достигают предельного состояния.

Резервирование, при котором работоспособность любого одного или нескольких резервных элементов в случае возникновения отказов подлежит восстановлению при эксплуатации, называется резервированием с восстановлением, в противном случае имеет место резервирование без вос­становления. Восстанавливаемость резерва обеспечивается при наличии контроля работоспособности элементов. При наличии резервирования это особенно важно, так как в этом случае число скрытых отказов может быть больше, чем при отсутствии резервирования. В идеальном варианте отказ любого элемента объекта обнаруживается без задержки, а отказавший элемент незамедлительно заменяется или ремонтируется.

ТЕМА: « Классификация методов резервирования»

ПЛАН:

1.Резервирование и избыточность

2.Классификация методов резервирования

В соответствии с ГОСТ 27.002-89 резервированием называется применение дополнительных средств и (или) возможностей с целью сохранения работоспособного состояния объекта при отказе одного или нескольких его элементов. Таким образом, резервирование - это метод повышения надежности объекта путем введения избыточности.

В свою очередь, избыточность - это дополнительные средства и (или) возможности сверхминимально необходимые для выполнения объектом заданных функций. Задачей введения избыточности является обеспечение нормального функционирования объекта после возникновения отказа в его элементах.

Существуют разнообразные методы резервирования. Их целесообразно разделять по следующим признакам (рис. 1): вид резервирования, способ соединения элементов, кратность резервирования, способ включения резерва, режим работы резерва, восстанавливаемость резерва.

Определение основного элемента не связано с понятием минимальности основной структуры объекта, поскольку элемент, являющийся основным в одних режимах эксплуатации, может служить резервным в других условиях.

Резервируемый элемент - основной элемент, на случай отказа которого в объекте предусмотрен резервный элемент

Временное резервирование связано с использованием резервов времени. При этом предполагается, что на выполнение объектом необходимой работы отводится время, заведомо большее минимально необходимого. Резервы времени могут создаваться за счет повышения производительности объекта, инерционности его элементов и т.д.

Информационное резервирование - это резервирование с применением избыточности информации. Примерами информационного резервирования являются многократная передача одного и того же сообщения по каналу связи; применение при передаче информации по каналам связи различных кодов, обнаруживающих и исправляющих ошибки, которые появляются в результате отказов аппаратуры и влияния помех; введение избыточных информационных символов при обработке, передаче и отображении информации. Избыток информации позволяет в той или иной мере компенсировать искажения передаваемой информации или устранять их.

Функциональное резервирование - резервирование, при котором заданная функция может выполняться различными способами и техническими средствами. Например, функция быстрой остановки водо-во-дяного энергетического реактора может быть осуществлена вводом в активную зону стержней аварийной защиты СУЗ или впрыском борного раствора. Или функция передачи информации в АСУ может выполняться с использованием радиоканалов, телеграфа, телефона и других средств связи. Поэтому обычные усредненные показатели надежности (средняя наработка на отказ, вероятность безотказной работы и т.п.) становятся малоинформативными и недостаточно пригодными для использования в данном случае. Наиболее подходящие показатели для оценки функциональной надежности: вероятность выполнения данной функции, среднее время выполнения функции, коэффициент готовности для выполнения данной функции

Нагрузочное резервирование - это резервирование с применением нагрузочных резервов. Нагрузочное резервирование, прежде всего, заключается в обеспечении оптимальных запасов способности элементов выдерживать действующие на них нагрузки. При других способах нагрузочного резервирования возможно введение дополнительных защитных или разгружающих элементов

По способу включения резервных элементов различают постоянное, динамическое, резервирование замещением, скользящее и мажоритарное резервирование. Постоянное резервирование - это резервирование без перестройки структуры объекта при возникновении отказа его элемента. Для постоянного резервировании существенно, что в случае отказа основного элемента не требуется специальных устройств, вводящих в действие резервный элемент, а также отсутствует перерыв в работе (рис. 5.2 и 5.3).

Постоянное резервирование в простейшем случае представляет собой параллельное соединение элементов без переключающих устройств.

Динамическое резервирование - это резервирование с перестройкой структуры объекта при возникновении отказа его элемента. Динамическое резервирование имеет ряд разновидностей.