Частное производное калькулятор. Вычисление производной функции онлайн

Пусть задана функция двух переменных. Дадим аргументу приращение, а аргумент оставим неизменным. Тогда функция получит приращение, которое называется частным приращением по переменной и обозначается:

Аналогично, фиксируя аргумент и придавая аргументу прираще-ние, получим частное приращение функции по переменной:

Величина называется полным прира-щениием функции в точке.

Определение 4. Частной производной функции двух переменных по одной из этих переменных называется предел отношения соответствующего частного приращения функции к приращению данной переменной, когда последнее стремится к нулю (если этот предел существует). Обозначается частная производная так: или, или.

Таким образом, по определению имеем:

Частные производные функции вычисляются по тем же правилам и формулам, что и функция одной переменной, при этом учитывается, что при дифференцировании по переменной, считается постоянной, а при дифференцировании по переменной постоянной считается.

Пример 3. Найти частные производные функций:

Решение. а) Чтобы найти считаем постоянной величиной и дифференцируем как функцию одной переменной:

Аналогично, считая постоянной величиной, находим:

Определение 5. Полным дифференциалом функции называется сумма произведений частных производных этой функции на приращения соответствующих независимых переменных, т.е.

Учитывая, что дифференциалы независимых переменных совпадают с их приращениями, т.е. , формулу полного дифференциала можно записать в виде

Пример 4. Найти полный дифференциал функции.

Решение. Так как, то по формуле полного дифференциала находим

Частные производные высших порядков

Частные производные и называют частными производными первого порядка или первыми частными производными.

Определение 6. Частными производными второго порядка функции называются частные производные от частных производных первого порядка.

Частных производных второго порядка четыре. Они обозначаются следующим образом:

Аналогично определяются частные производные 3-го, 4-го и более высоких порядков. Например, для функции имеем:

Частные производные второго или более высокого порядка, взятые по различным переменным, называются смешанными частными производными. Для функции таковыми являются производные. Заметим, что в случае, когда смешанные производные непрерывны, то имеет место равенство.

Пример 5. Найти частные производные второго порядка функции

Решение. Частные производные первого порядка для данной функции найдены в примере 3:

Дифференцируя и по переменным х и y, получим

Понятие функции многих переменных

Пусть имеется n-перем-х и каждому х 1 , х 2 … х n из нек-го множ-ва х поставлено в соответствие опред. число Z, тогда на множ-ве х задана ф-ция Z=f(х 1 , х 2 … х n) многих переменных.

Х – обл-ть опред-я ф-ции

х 1 , х 2 … х n – независ-е переем-е (аргументы)

Z – ф-ция Пример: Z=П х 2 1 *х 2 (Объем цилиндра)

Рассм-м Z=f(х;у) – ф-цию 2-х перем-х (х 1 , х 2 замен-ся на х,у). Рез-ты по аналогии переносятся на др. ф-ции многих перем-х. Обл-ть опред-я ф-ции 2-х перем-х – вся корд пл-ть (оху) или ее часть. Мн-во знач-й ф-ции 2-х перем-х – поверх-ть в 3х-мерном простр-ве.

Приемы построения графиков: - Рассм-т сечение поверх-ти пл-тями || координатным пл-тям.

Пример: х = х 0 , зн. пл-ть Х || 0уz у = у 0 0хz Вид ф-ции: Z=f(х 0 ,y); Z=f(x,у 0)

Например: Z=x 2 +y 2 -2y

Z= x 2 +(y-1) 2 -1 x=0 Z=(y-1) 2 -1 y=1 Z= x 2 -1 Z=0 x 2 +(y-1) 2 -1

Парабола окруж-ть(центр(0;1)

Пределы и непрерывность ф-ций двух переменных

Пусть задана Z=f(х;у), тогда А – предел ф-ции в т.(х 0 ,y 0), если для любого сколь угодно малого положит. числа E>0 сущ-т полож-е число б>0, что для всех х,у удовл-щих |x-х 0 |<б; |y-y 0 |<б выполняется нерав-во |f(x,y)-A|

Z=f(х;у) непрерывна в т.(х 0 ,y 0), если: - она опред-на в этой т.; - имеет конеч. предел при х, стрем-ся к х 0 и у к у 0 ; - этот предел = знач-ю

ф-ции в т.(х 0 ,y 0), т.е. limf(х;у)=f(х 0 ,y 0)

Если ф-ция непрерывна в кажд. т. мн-ва Х, то она непрерывна в этой области

Дифференциал ф-ции, его геом смысл. Применение диф-ла в приближенных значениях.

dy=f’(x)∆x – диф-л ф-ции

dy=dx, т.е. dy=f ’(x)dx если у=х

С геом точки зрения диф-л ф-ции – это приращение ординаты касательной, проведенной к графику ф-ции в точке с абсциссой х 0

Диф-л применяют в вычислении приближ. значений ф-ции по формуле: f(х 0 +∆x)~f(х 0)+f’(х 0)∆x

Чем ближе ∆x к х, тем результат точнее

Частные производные первого и второго порядка

Производная первого порядка(которая называется частной)

О. Пусть х, у – приращения независимых переменных х и у в некоторой точке из области Х. Тогда величина, равная z = f(x+ х, y+ у) = f(x,y) называется полным приращением в точке х 0, у 0. Если переменную х зафиксировать, а переменной у дать приращение у, то получим zу = f(x,y,+ у) – f(x,y)



Аналогично определяется частная производная от переменной у, т.е.

Частную производную функции 2-х переменных находят по тем же правилам, что и для функций одной переменной.

Отличие состоит в том, что при дифференциации функции по переменной х, у считается const, а при дифференцировании по у, х считается const.

Изолированные const соединены с функцией операциями сложения/вычитания.

Связанные const соединены с функцией операциями умножения/деления.

Производная изолированной const = 0

1.4.Полный дифференциал функции 2-х переменных и его приложения

Пусть z = f(x,y), тогда

tz = - называется полным приращением

Частная производная 2-го порядка

Для непрерывных функций 2-х переменных смешанные частные производные 2-го порядка и совпадают.

Применение частных производных к определению частных производных max и min функций называются экстремумами.

О. Точки называются max или min z = f(x,y), если существуют некоторые отрезки такие, что для всех x и y из этой окрестности f(x,y)

Т. Если задана точка экстремума функции 2-х переменных, то значение частных производных в этой точке равны 0, т.е. ,

Точки , в которых частные производные первого порядка называются стационарными или критическими.

Поэтому для нахождения точек экстремума функции 2-х переменных используются достаточные условия экстремума.

Пусть функция z = f(x,y) дважды дифференцируема, и стационарная точка,

1) , причем maxA<0, minA>0.

1.4.(*)Полный дифференциал. Геометрический смысл дифференциала. Приложение дифференциала в приближенных вычислениях

О. Пусть функция y = f(x) определена в некоторой окрестности в точки . Функция f(x) называется дифференцируемой в точке , если ее приращение в этой точке , где представлено в виде (1)

Где А – постоянная величина, не зависящая от , при фиксированной точке х, - бесконечно малая при . Линейная относительно функция А называется дифференциалом функции f(x) в точке и обозначается df() или dy.

Таким образом, выражение (1) можно записать в виде ().

Дифференциал функции в выражении (1) имеет вид dy = A . Как и всякая линейная функция, он определен для любого значений в то время, как приращение функции необходимо рассматривать только для таких , для которых + принадлежит области определения функции f(x).

Для удобства записи дифференциала приращение обозначают dx и называют его дифференциалом независимой переменной x. Поэтому дифференциал записывают в виде dy = Adx.

Если функция f(x) дифференцируема в каждой точке некоторого интервала, то ее дифференциал является функцией двух переменных – точки x и переменной dx:

Т. Для того, чтобы функция y = g(x) была дифференцируема в некоторой точке , необходимо и достаточно, чтобы она имела в этой точке производную, при этом

(*)Доказательство. Необходимость.

Пусть функция f(x) дифференцируема в точке , т.е. . Тогда

Поэтому производная f’() существует и равна А. Отсюда dy = f’()dx

Достаточность.

Пусть существует производная f’(), т.е. = f’(). Тогда кривую y = f(x) отрезком касательной. Для вычисления значения функции в точке х берут в некоторой ее окрестности точку , такую, что не составляет труда найти f() и f’()/

Определение. Частными производными второго порядка от функции называются частные производные от ее частных производных первого порядка.

Обозначения частных производных второго порядка:

Для практических примеров справедливо следующее равенство:

Таким образом, через смешанные производные второго порядка очень удобно проверять правильность нахождения частных производных первого порядка.

Примеры.

а) Найти частные производные второго порядка функции

Решение.

1.Считаем переменную y

2. Полученную функцию еще раз продифференцируем по «икс», т.е. найдем вторую производную по «икс»:

3.Считаем переменную х константой, применяем правило дифференцирования суммы, правило вынесение постоянного множителя за знак производной и табличную производную степенной функции:

4. Полученную функцию еще раз продифференцируем по «игрек», т.е. найдем вторую производную по «игрек»:

5. Найдем смешанную производную «икс по игрек». Для этого первую производную по «икс» продифференцируем по «игрек».

5. Найдем смешанную производную «игрек по икс». Для этого первую производную по «игрек» продифференцируем по «икс».

б) Найти частные производные первого порядка функции Проверить, что Записать полный дифференциал первого порядка dz.

Решение.

1.Найдем частные производные первого порядка, применяя правила вычисления производной произведения, суммы, вынесения постоянного множителя за знак производной и табличные интегралы тригонометрических функций:

2. Найдем смешанные производные второго порядка:

3. Составим полный дифференциал первого порядка:

в) Показать, что данная функция удовлетворяет уравнению

Решение.

1.Найдем частную производную заданной функции по «икс»:

2. Умножим полученное выражение х 2 :

3. От полученной функции найдем частную производную по «икс»:

4. Найдем частную производную заданной функции по «игрек»:

5. Вычислим вторую производную по «игрек»:

6. Умножим полученную функцию на у 2 :

7. Вычтем из результата, полученного в п.5, результат п.6:

Что и требовалось показать.


Похожая информация:

  1. V3: {{101}} 04.07.14. Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами (общее решение)

На данном уроке мы познакомимся с понятием функции двух переменных, а также подробно рассмотрим наиболее распространенное задание – нахождение частных производных первого и второго порядка, полного дифференциала функции.

Для эффективного изучения нижеизложенного материала Вам необходимо уметь более или менее уверенно находить «обычные» производные функции одной переменной. Научиться правильно обращаться с производными можно на уроках Как найти производную? и Производная сложной функции . Также нам потребуется таблица производных элементарных функций и правил дифференцирования, удобнее всего, если она будет под рукой в распечатанном виде.

Начнем с самого понятия функции двух переменных, постараемся ограничиться минимумом теории, так как сайт имеет практическую направленность. Функция двух переменных обычно записывается как , при этом переменные , называются независимыми переменными или аргументами .

Пример: - функция двух переменных.

Иногда используют запись . Также встречаются задания, где вместо буквы используется буква .

Полезно знать геометрический смысл функций. Функции одной переменной соответствует определенная линия на плоскости, например, – всем знакомая школьная парабола. Любая функция двух переменных с геометрической точки зрения представляет собой поверхность в трехмерном пространстве (плоскости, цилиндры, шары, параболоиды и т.д.). Но, собственно, это уже аналитическая геометрия, а у нас на повестке дня математический анализ.

Переходим к вопросу нахождения частных производных первого и второго порядков. Должен сообщить хорошую новость для тех, кто выпил несколько чашек кофе и настроился на невообразимо трудный материал: частные производные – это почти то же самое, что и «обычные» производные функции одной переменной.

Для частных производных справедливы все правила дифференцирования и таблица производных элементарных функций. Есть только пара небольших отличий, с которыми мы познакомимся прямо сейчас.



Пример 1

Найти частные производные первого и второго порядка функции

Сначала найдем частные производные первого порядка. Их две.

Обозначения:

Или – частная производная по «икс»

Или – частная производная по «игрек»

Начнем с .

Важно! Когда мы находим частную производную по «икс», то переменнаясчитается константой (постоянным числом).

Решаем. На данном уроке будем сразу приводить полное решение, а комментарии давать ниже.

Комментарии к выполненным действиям:

(1) Первое, что мы делаем при нахождении частной производной – заключаем всю функцию в скобки под штрих с подстрочным индексом .

Внимание, важно! Подстрочные индексы НЕ ТЕРЯЕМ по ходу решения. В данном случае, если Вы где-нибудь нарисуете «штрих» без , то преподаватель, как минимум, может поставить рядом с заданием (сразу откусить часть балла за невнимательность).

(2) Используем правила дифференцирования ; . Для простого примера, как этот, оба правила вполне можно применить на одном шаге. Обратите внимание на первое слагаемое: так как считается константой, а любую константу можно вынести за знак производной , то мы выносим за скобки. То есть в данной ситуации ничем не лучше обычного числа. Теперь посмотрим на третье слагаемое : здесь, наоборот, выносить нечего. Так как константа, то – тоже константа, и в этом смысле она ничем не лучше последнего слагаемого – «семерки».

(2) Используем таблицу производных элементарных функций. Мысленно поменяем в таблице все «иксы» на «игреки». То есть данная таблица рАвно справедлива для(и вообще для любой буквы). В данном случае, используемые нами формулы имеют вид: и .

Итак, частные производные первого порядка найдены

Каждая частная производная (по x и по y ) функции двух переменных представляет собой обыкновенную производную функции одной переменной при фиксированном значении другой переменной:

(где y = const),

(где x = const).

Поэтому частные производные вычисляют по формулам и правилам вычисления производных функций одной переменной , считая при этом другую переменную постоянной (константой).

Если Вам не нужен разбор примеров и необходимого для этого минимума теории, а нужно лишь решение Вашей задачи, то переходите к калькулятору частных производных онлайн .

Если тяжело сосредоточиться, чтобы отслеживать, где в функции константа, то можно в черновом решении примера вместо переменной с фиксированным значением подставить любое число - тогда можно будет быстрее вычислить частную производную как обыкновенную производную функции одной переменной. Надо только не забыть при чистовом оформлении вернуть на место константу (переменную с фиксированном значением).

Описанное выше свойство частных производных следует из определения частной производной, которое может попасться в экзаменационных вопросах. Поэтому для ознакомления с определением ниже можно открыть теоретическую справку.

Понятие непрерывности функции z = f (x , y ) в точке определяется аналогично этому понятию для функции одной переменной.

Функция z = f (x , y ) называется непрерывной в точке если

Разность (2) называется полным приращением функции z (оно получается в результате приращений обоих аргументов).

Пусть заданы функция z = f (x , y ) и точка

Если изменение функции z происходит при изменении только одного из аргументов, например, x , при фиксированном значении другого аргумента y , то функция получит приращение

называемое частным приращением функции f (x , y ) по x .

Рассматривая изменение функции z в зависимости от изменения только одного из аргументов, мы фактически переходим к функции одной переменной.

Если существует конечный предел

то он называется частной производной функции f (x , y ) по аргументу x и обозначается одним из символов

(4)

Аналогично определяются частное приращение z по y :

и частная производная f (x , y ) по y :

(6)

Пример 1.

Решение. Находим частную производную по переменной "икс":

(y фиксировано);

Находим частную производную по переменной "игрек":

(x фиксировано).

Как видно, не имеет значения, в какой степени переменная, которая фиксирована: в данном случае это просто некоторое число, являющееся множителем (как в случае обычной производной) при переменной, по которой находим частную производную. Если же фиксированная переменная не умножена на переменную, по которой находим частную производную, то эта одинокая константа, безразлично, в какой степени, как и в случае обычной производной, обращается в нуль.

Пример 2. Дана функция

Найти частные производные

(по иксу) и (по игреку) и вычислить их значения в точке А (1; 2).

Решение. При фиксированном y производная первого слагаемого находится как производная степенной функции (таблица производных функций одной переменной ):

.

При фиксированном x производная первого слагаемого находится как производная показательной функции, а второго – как производная постоянной:

Теперь вычислим значения этих частных производных в точке А (1; 2):

Проверить решение задач с частными производными можно на калькуляторе частных производных онлайн .

Пример 3. Найти частные производные функции

Решение. В один шаг находим

(y x , как если бы аргументом синуса было 5x : точно так же 5 оказывается перед знаком функции);

(x фиксировано и является в данном случае множителем при y ).

Проверить решение задач с частными производными можно на калькуляторе частных производных онлайн .

Аналогично определяются частные производные функции трёх и более переменных.

Если каждому набору значений (x ; y ; ...; t ) независимых переменных из множества D соответствует одно определённое значение u из множества E , то u называют функцией переменных x , y , ..., t и обозначают u = f (x , y , ..., t ).

Для функций трёх и более переменных геометрической интерпретации не существует.

Частные производные функции нескольких переменных определяются и вычисляются также в предположении, что меняется только одна из независимых переменных, а другие при этом фиксированы.

Пример 4. Найти частные производные функции

.

Решение. y и z фиксированы:

x и z фиксированы:

x и y фиксированы:

Найти частные производные самостоятельно, а затем посмотреть решения

Пример 5.

Пример 6. Найти частные производные функции .

Частная производная функции нескольких переменных имеет тот же механический смысл, что и производная функции одной переменной , - это скорость изменения функции относительно изменения одного из аргументов.

Пример 8. Количественная величина потока П пассажиров железных дорог может быть выражена функцией

где П – количество пассажиров, N – число жителей корреспондирующих пунктов, R – расстоянии между пунктами.

Частная производная функции П по R , равная

показывает, что уменьшение потока пассажиров обратно пропорционально квадрату расстояния между корреспондирующими пунктами при одной и той же численности жителей в пунктах.

Частная производная П по N , равная

показывает, что увеличение потока пассажиров пропорционально удвоенному числу жителей населённых пунктов при одном и том же расстоянии между пунктами.

Проверить решение задач с частными производными можно на калькуляторе частных производных онлайн .

Полный дифференциал

Произведение частной производной на приращение соответствующей независимой переменной называется частным дифференциалом. Частные дифференциалы обозначаются так:

Сумма частных дифференциалов по всем независимым переменным даёт полный дифференциал. Для функции двух независимых переменных полный дифференциал выражается равенством

(7)

Пример 9. Найти полный дифференциал функции

Решение. Результат использования формулы (7):

Функция, имеющая полный дифференциал в каждой точке некоторой области, называется дифференцируемой в этой области.

Найти полный дифференциал самостоятельно, а затем посмотреть решение

Так же как и в случае функции одной переменной, из дифференцируемости функции в некоторой области следует её непрерывность в этой области, но не наоборот.

Сформулируем без доказательств достаточное условие дифференцируемости функции.

Теорема. Если функция z = f (x , y ) имеет непрерывные частные производные

в данной области, то она дифференцируема в этой области и её дифференциал выражается формулой (7).

Можно показать, что подобно тому, как в случае функции одной переменной дифференциал функции является главной линейной частью приращения функции , так и в случае функции нескольких переменных полный дифференциал является главной, линейной относительно приращений независимых переменных частью полного приращения функции.

Для функции двух переменных полное приращение функции имеет вид

(8)

где α и β – бесконечно малые при и .

Частные производные высших порядков

Частные производные и функции f (x , y ) сами являются некоторыми функциями тех же переменных и, в свою очередь, могут иметь производные по разным переменным, которые называются частными производными высших порядков.