Пульт управления реактором. Пульт управления ядерным реактором

Осенью 2011 года в Объединённом институте ядерных исследований (ОИЯИ, г. Дубна) после плановой остановки вновь запущен уже модернизированный импульсный реактор на быстрых нейтронах - ИБР-2М. Короткие импульсы частотой до пяти герц с высокой плотностью нейтронов ставят его в один ряд с лучшими мировыми установками такого класса. Обновлённый реактор - это уникальный инструмент для физиков, биологов и создателей новых веществ и наноматериалов.

Реактор ИБР-2 начал работу в 1984 году. В 2006 году, без всяких замечаний, его остановили - таковы эксплуатационные правила. Когда заканчивается некий оговорённый проектом ресурс, реактор необходимо либо демонтировать, либо модернизировать, независимо от состояния оборудования. В данном случае выгорание топлива и накопленный конструкциями активной зоны флюенс нейтронов достигли пределов, которые на этапе проектирования обосновали главный конструктор и генеральный проектировщик реактора.

Реактор проектировали в Научно-исследовательском и конструкторском институте энерготехники им. Н. А. Доллежаля (ОАО «НИКИЭТ») и специализированном проектном институте (ГСПИ). В работах по модернизации, продолжавшихся около десяти лет, приняли участие Всероссийский научно-исследовательский институт неорганических материалов им. А. А. Бочвара (ФГУП ВНИИНМ), ПО «Маяк» и другие предприятия атомной отрасли. Сейчас оборудование реактора заменили в соответствии с новыми российскими стандартами, которые полностью отвечают стандартам МАГАТЭ. Двенадцатого октября 2011 года в 14.34 реактор ИБР-2М был запущен и достиг номинальной мощности 2 МВт. Обновлённый реактор станет работать до 2035 года. Предполагается, что исследователи из разных стран мира смогут ежегодно проводить на нём не менее ста научных экспериментов.

Импульсный реактор на быстрых нейтронах - воплощение идеи Дмитрия Ивановича Блохинцева. Первый такой реактор - ИБР-1 - запустили полвека назад, а всего в институте их было три - ИБР-1, И БР-30 и ИБР-2 (см. «Наука и жизнь» №1, 2005 г.). Реакторы предназначались для изучения взаимодействия нейтронов с атомными ядрами. С помощью пучка нейтронов можно исследовать возникающие ядерные реакции, возбуждение ядер, их структуру, то есть свойства самых разных веществ, решая при этом не только сугубо научные, но и некоторые прикладные задачи.

В книге «Рождение мирного атома» (М.: Атомиздат, 1977) академик Д. И. Блохинцев рассказывал, что в разработке теории импульсного реактора приняли участие сотрудники Физико-энергетического института им. А. И. Лейпунского (ГНЦ РФ-ФЭИ). Они придумали устройство небольшой мощности, в котором «зажигается» управляемая цепная реакция в виде коротких импульсов, или маленьких «ядерных взрывов» с выбросом нейтронов. Блохинцев предложил конструкцию реактора с двумя активными зонами - неподвижной на статоре и быстро вращающейся на роторе. Реактор переходит в сверхкритическое состояние, когда ротор проскакивает мимо статора, и в нём на мгновение развивается мощная цепная реакция, затухающая с удалением ротора. Такую «атомную мини-бомбу» и удалось «приручить» в Дубне. Из реактора вылетают нейтроны разных энергий, от медленных (тепловых) до быстрых (высокой энергии), возникающих в виде короткого импульса сразу после процесса деления. На пути от реактора к мишени импульс растягивается, поэтому можно понять, какие ядерные реакции вызваны быстрыми нейтронами (которые прилетают первыми), а какие - медленными (приходящими позже).

После остановки ИБР-2 сотрудники Лаборатории нейтронной физики и других подразделений ОИЯИ занялись разработкой, проектированием, сборкой и отладкой всех его важных узлов. Корпус реактора, внутренние и околореакторные устройства, систему электропитания, аппаратуру систем управления, защиты реактора и контроля технологических параметров создали заново согласно современным требованиям. В реконструкцию реактора было вложено около 11 миллионов долларов.

В конце июня 2011 года в ОИЯИ Государственная приёмочная комиссия подписала акт о готовности модернизированного реактора ИБР-2М к энергетическому пуску (с выходом нейтронов), который последовал за физическим, когда проверялась только работа его узлов и механизмов, и выдала лицензию на его использование.

После модернизации реактора изменилось очень многое. Во-первых, у ИБР-2М стала компактней активная зона - шестигранная призма объёмом примерно 22 литра. Она помещена в цилиндрический корпус высотой около семи метров в двойной стальной оболочке. Максимальная плотность потока нейтронов в импульсе в центре активной зоны достигает огромного значения - 10 17 на квадратный сантиметр в секунду. Поток уходящих из активной зоны нейтронов разделяется на 14 горизонтальных пучков для проведения научных экспериментов.

В модернизированном ИБР-2 в полтора раза увеличена глубина выгорания топливных элементов реактора, выполненных из таблеток двуокиси плутония (PuO 2). Плутоний весьма редко служит основой ядерного топлива в исследовательских реакторах, в них обычно применяют урановые композиции. В ИБР-2М используется существенное преимущество плутония в сравнении с ураном: доля запаздывающих нейтронов - важная характеристика качества нейтронного источника - у плутония в три раза меньше, чем у урана, следовательно, радиационный фон между основными импульсами слабее. Высокая плотность нейтронов в импульсе, длительная эксплуатация активной зоны (за счёт кратковременного, импульсного режима работы) позволяют отнести модернизированный ИБР-2 к лидирующей в мире группе нейтронных источников.

Реактор генерирует нейтронные импульсы частотой пять герц, которую обеспечивает так называемый подвижный отражатель. Эта сложная механическая система, смонтированная рядом с активной зоной, состоит из двух массивных роторов. Они изготовлены из стали с высоким содержанием никеля и вращаются в противоположных направлениях с разными скоростями в кожухе, наполненном чистым газообразным гелием. В момент совмещения роторов у физического центра активной зоны реактора возникает нейтронный импульс. Скорость основного ротора в усовершенствованном подвижном отражателе уменьшена в два с половиной раза по сравнению с предыдущим - до 600 оборотов в минуту, благодаря чему эксплуатационный ресурс реактора увеличился с 20 до 55 тысяч часов, а длительность нейтронного импульса не изменилась.

Система охлаждения реактора состоит из трёх контуров: в первом и втором используется жидкий натрий, который перекачивают электромагнитные насосы, в третьем - воздух. Такая схема обеспечивает безопасность реактора: если один контур выйдет из строя, его отсекут аварийными вентилями. Жидкий натрий используют потому, что, если во всех контурах будет вода, сильно замедляющая нейтроны, энергия нейтронного излучения понизится. В первом контуре, трубы которого имеют двойную защитную оболочку, циркулирует радиоактивный натрий, во втором - необлучённый натрий. При аварийном отключении электричества сохранение натрия в жидком виде (выше температуры плавления 97,9°С), а значит, и охлаждение реактора надёжно обеспечат газовый нагрев.

Дубна - это фактически остров, границы которого хорошо контролируются. Кроме того, сам ОИЯИ функционирует на охраняемой территории, а ИБР-2М имеет собственный внутренний периметр физической защиты. Концепция охраняемого «ядерного острова» гарантированно защищает реактор от внешней угрозы. Если же во время работы реактора что-то произойдёт из-за действий персонала, сработает так называемая защита от дурака (fool proof system ) - никто ни сознательно, ни бессознательно не сможет причинить ему ущерб. Например, если вдруг параметры очередного нейтронного импульса отличаются от заложенных, сработает быстрая аварийная защита без вмешательства оператора. Такой контроль идёт по всему реактору, причём все системы защиты зарезервированы и продублированы. Когда из-за перебоев в электроснабжении было несколько ложных срабатываний, реактор гасили и анализировали происшествия. В интересах безопасности на реакторе используют три источника электропитания: штатное по высоковольтным линиям 110 кВ от пункта питания «Темпы», 10 кВ от Иваньковской ГЭС на Волге и от резервного мощного дизельного генератора с запасом топлива, достаточным для длительной работы. В любом реакторе необходимо в первую очередь обеспечить стабильное охлаждение активной зоны при любой аварии, чтобы избежать развития событий по японскому варианту, когда при нарушении охлаждения активной зоны произошли разгерметизация топливных элементов с частичным их расплавлением и выход продуктов деления в окружающую среду. На реакторе ИБР-2М негативные сценарии возможных аварий и их последствий достаточно хорошо продуманы, и пересматривать расчёты после японской трагедии не пришлось. Печальное событие в Фукусиме, повлекшее за собой многочисленные жертвы, показало, насколько устарели некоторые принципы безопасности, заложенные в проект этой АЭС. В наше время при строительстве атомных станций закладывают более жёсткие принципы безопасности, учитывая многие события прошлого. Сегодня, например, никто не поставит АЭС на берегу океана в высокосейсмичной зоне. Что же касается реактора ОИЯИ, то он выдержит землетрясение до семи баллов, хотя в районе Дубны вероятность землетрясения магнитудой шесть баллов - один раз в тысячу лет, а магнитудой пять баллов - раз в сто лет.

Реактор ОИЯИ эксплуатируют в режиме центра коллективного пользования - проводить на нём эксперименты могут также исследователи из других организаций. Время для работы на реакторе ИБР-2М чётко распределено: внутренние пользователи получают 35% времени, для других организаций 55% предусмотрено на обычные заявки, 10% - на срочные. Заявки рассматривают международная экспертная комиссия и ответственный экспериментатор, которые дают заключение: можно ли провести данные исследования на реакторе. Эксперименты очень дороги, поэтому их экспертиза - обычная международная практика. Модернизированный реактор открывает богатейшие возможности как для фундаментальных, так и для прикладных исследований при помощи уникальной аппаратуры, которую многие годы испытывали и совершенствовали в стенах института. Сегодня она стоит на всех четырнадцати каналах реактора, идут работы по созданию для него нового криогенного замедлителя, позволяющего менять спектр нейтронов.

Методом рассеяния нейтронов можно получать информацию об устройстве вещества на атомном и надатомном уровне, выяснять его свойства и структуру, причём это касается также биологических материалов. С помощью фурье-дифрактометра , например, можно изучать строение вещества, структуру моно- и поликристаллов, исследовать новые типы материалов - композитов, керамик, градиентных систем; возникающие в кристаллах и многофазных системах механические напряжения и деформации. Высокая проницающая способность нейтронов позволяет применять их для неразрушающего контроля напряжений в объёмных материалах или изделиях под воздействием нагрузок, облучения или высокого давления. Обычные методы не способны обнаруживать скрытые дефекты внутри бруска толщиной несколько сантиметров. Нейтронография даёт возможность обследовать материал по всему объёму и найти места напряжений, которые в процессе эксплуатации станут критическими дефектами. В геофизике нейтроны используют для изучения горных пород, и по ориентации кристаллитов в них можно восстановить картину протекавших там процессов. На реакторе уже исследовали керны пород из Кольской сверхглубокой скважины, поднятые с восьми-десяти километров. Полученные данные позволили проверить и дополнить модели тектонических процессов, проходивших в этом регионе.

На ИБР-2М изучают сложные оксидные материалы, применяемые для записи и хранения информации в системах связи и в энергетике - с колоссальным магнитным сопротивлением, сверхпроводимостью, магнитоэлектрическими эффектами, выясняя, какие механизмы лежат в основе их физических свойств на структурном уровне. Спектрометры и рефлектометры с поляризованными электронами позволяют изучать объёмные наноструктуры, в том числе многослойные; коллоидные растворы; ферромагнитные жидкости; определять структуру поверхностей и тонких плёнок толщиной до нескольких тысяч микрон, их ядерные и магнитные свойства. Спектрометр малоуглового рассеяния нейтронов благодаря щадящему характеру излучения способен исследовать биологические объекты размером до нанометра: полимеры, белки в растворе, митохондрии, мембраны. Под действием различных факторов у мембраны изменяются структура, толщина, физические свойства, проницаемость, подвижность. Все эти изменения отражаются на спектре рассеяния нейтронов и дают сведения о биологических объектах в процессе их жизнедеятельности, что невозможно сделать другими способами.

Флюенс - суммарное количество нейтронов, прошедших через удельную поверхность конструкции за весь срок службы реактора. Для всех материалов, используемых в ядерных реакторах, установлена предельная величина флюенса, превышение которой вызывает радиационные повреждения.
Фурье-дифрактометр - оптическое устройство, в котором после прохождения нейтронов через образец вначале получают распределение дифракционных максимумов, а затем путём фурье-преобразования, то есть разложения по частотам, вычисляют спектральное распределение нейтронов.

Устойчивость работы реактора

Пульт управления ядерным реактором

Зал управления ядерным реактором

Ядерные реакторы проектируются так, чтобы в любой момент времени процесс деления находился в устойчивом равновесии относительно малых изменений параметров, влияющих на реактивность (см. Коэффициент размножения нейтронов). Например, при выдвижении управляющего стержня из реактора коэффициент размножения нейтронов становится больше единицы, что при неизменности всех остальных параметров приводит к экспоненциальному нарастанию скорости ядерной реакции с характерным временем нейтронного цикла от τ = 10−3 с для реакторов на тепловых нейтронах до τ = 10−8 с для реакторов на быстрых нейтронах. Однако, при повышении скорости ядерной реакции растёт тепловая мощность реактора, в результате чего растёт температура ядерного топлива, что приводит к уменьшению сечения захвата нейтронов и, в свою очередь, к уменьшению скорости ядерной реакции. Таким образом, случайное повышение скорости ядерной реакции гасится, а вызванное перемещением управляющих стержней или медленным изменением других параметров - приводит к квазистационарному изменению мощности реактора, а не развитию взрыва. Описанная закономерность является одной из физических причин отрицательного мощностного коэффициента реактивности.

Для безопасного управления ядерным реактором крайне важно, чтобы все коэффициенты реактивности были отрицательны. В случае, если хотя бы один коэффициент реактивности положительный, работа реактора становится неустойчивой, причём время развития этой неустойчивости может быть настолько малым, что никакие системы активной аварийной защиты ядерного реактора не успевают сработать. В частности, анализ показал, что положительный паровой коэффициент реактивности реактора РБМК стал одной из причин Чернобыльской аварии.

Снижение реактивности

Реактор, работающий в стационарном режиме как угодно долго, представляет собой математическую абстракцию. На самом деле, протекающие в реакторе процессы вызывают ухудшение размножающих свойств среды, и без механизма восстановления реактивности реактор не смог бы работать сколь-либо продолжительное время. Обращение нейтронов в реакторе включает процесс деления; каждый акт деления означает убыль атома делящегося материала, а значит, и снижение k0. Правда, делящиеся атомы частично восстанавливаются за счёт поглощения избытка нейтронов ядрами 238U с образованием 239Pu. Однако накопление нового делящегося материала обычно не компенсирует потерь делящихся атомов, и реактивность снижается. Кроме того, каждый акт деления сопровождается появлением двух новых атомов, ядра которых, как и любые другие ядра, поглощают нейтроны. Накопление продуктов деления также снижает реактивность (см. Иодная яма). Снижение реактивности компенсируется квазистационарным понижением температуры реактора (соответствующее увеличение сечения захвата нейтронов компенсирует падение реактивности и возвращает реактор в критическое состояние). Однако, активные зоны энергетических реакторов должны быть разогреты до возможно бо́льшей (проектной) температуры, поскольку коэффициент полезного действия тепловой машины в конечном счёте определяется разностью температур источника тепла и холодильника - окружающей среды. Поэтому нужны системы управления для восстановления реактивности и поддержания проектной мощности и температуры активной зоны.

Система управления

Система управления была впервые разработана и применена на установке Ф-1. Создатель системы - Е. Н. Бабулевич

Ядерный реактор может работать с заданной мощностью в течение длительного времени только в том случае, если в начале работы имеет запас реактивности. Исключение составляют подкритические реакторы с внешним источником тепловых нейтронов. Освобождение связанной реактивности по мере её снижения в силу естественных причин обеспечивает поддержание критического состояния реактора в каждый момент его работы. Первоначальный запас реактивности создается путём постройки активной зоны с размерами, значительно превосходящими критические. Чтобы реактор не становился надкритичным, одновременно искусственно снижается k0 размножающей среды. Это достигается введением в активную зону веществ-поглотителей нейтронов, которые могут удаляться из активной зоны в последующем. Так же как и в элементах регулирования цепной реакции, вещества-поглотители входят в состав материала стержней того или иного поперечного сечения, перемещающихся по соответствующим каналам в активной зоне. Но если для регулирования достаточно одного-двух или нескольких стержней, то для компенсации начального избытка реактивности число стержней может достигать сотни. Эти стержни называются компенсирующими. Регулирующие и компенсирующие стержни не обязательно представляют собой различные элементы по конструктивному оформлению. Некоторое число компенсирующих стержней может быть стержнями регулирования, однако функции тех и других отличаются. Регулирующие стержни предназначены для поддержания критического состояния в любой момент времени, для остановки, пуска реактора, перехода с одного уровня мощности на другой. Все эти операции требуют малых изменений реактивности. Компенсирующие стержни постепенно выводятся из активной зоны реактора, обеспечивая критическое состояние в течение всего времени его работы.

Иногда стержни управления делаются не из материалов-поглотителей, а из делящегося вещества или материала-рассеивателя. В тепловых реакторах - это преимущественно поглотители нейтронов, эффективных же поглотителей быстрых нейтронов нет. Такие поглотители, как кадмий, гафний и другие, сильно поглощают лишь тепловые нейтроны благодаря близости первого резонанса к тепловой области, а за пределами последней ничем не отличаются от других веществ по своим поглощающим свойствам. Исключение составляет бор, сечение поглощения нейтронов которого снижается с энергией значительно медленнее, чем у указанных веществ, по закону l / v. Поэтому бор поглощает быстрые нейтроны хотя и слабо, но несколько лучше других веществ. Материалом-поглотителем в реакторе на быстрых нейтронах может служить только бор, по возможности обогащенный изотопом 10В. Помимо бора в реакторах на быстрых нейтронах для стержней управления применяются и делящиеся материалы. Компенсирующий стержень из делящегося материала выполняет ту же функцию, что и стержень-поглотитель нейтронов: увеличивает реактивность реактора при естественном её снижении. Однако, в отличие от поглотителя, такой стержень в начале работы реактора находится за пределами активной зоны, а затем вводится в активную зону. Из материалов-рассеивателей в быстрых реакторах употребляется никель, имеющий сечение рассеяния быстрых нейтронов несколько больше сечений других веществ. Стержни-рассеиватели располагаются по периферии активной зоны и их погружение в соответствующий канал вызывает снижение утечек нейтронов из активной зоны и, следовательно, возрастание реактивности. В некоторых специальных случаях целям управления цепной реакцией служат подвижные части отражателей нейтронов, при перемещении изменяющие утечки нейтронов из активной зоны. Регулирующие, компенсирующие и аварийные стержни совместно со всем оборудованием, обеспечивающим их нормальное функционирование, образуют систему управления и защиты реактора (СУЗ).

Аварийная защита

На случай непредвиденного катастрофического развития цепной реакции, а также возникновения других аварийных режимов, связанных с энерговыделением в активной зоне, в каждом реакторе предусмотрено экстренное прекращение цепной реакции, осуществляемое сбрасыванием в активную зону специальных аварийных стержней или стержней безопасности. Аварийные стержни изготовляются из поглощающего нейтроны материала. Они сбрасываются под действием силы тяжести в центральную часть активной зоны, где поток наибольший, а значит, и наиболее велика отрицательная реактивность, вносимая в реактор стержнем. Стержней безопасности, как и регулирующих, обычно два или несколько, однако в отличие от регуляторов они должны связывать возможно бо́льшую величину реактивности. Роль стержней безопасности может выполнять и часть компенсирующих стержней.

НУ18 - аппаратура АКНП (2 комплект)

НУ19-НУ24 - панели безопасности 1, 2, 3 систем

НУ25, НУ26 - приборные панели турбоагрегата

НУ27 - турбина ЦВД

НУ28 - конденсатор, цирксистема, эжекторы

НУ30 - питательно-деаэраторная установка

НУ31 - маслонасосы

НУ32, НУ33 - блок генератор-трансформатор и тр-ры С.Н

НУ34, НУ35 - ТПН №1 и №2

НУ14а - питание ПГ (РПК)

НУ37, НУ37а - панель промклеммники ТО

НУ38, НУ39 - температурный контроль генератора (А701-03)

НУ40, НУ41 - панель самописцев ТО

НУ42 - панель синхронизации генератора

НУ43 - панель аварийного освещения

НУ51 - пульт аппаратуры ФГУ

НУ52 - пульт аппаратуры АКНП

НУ53 - пульт аппаратуры СВРК (клавиатура)

НУ54 - пульт клавиатур УВС

НУ55 - пульт аппаратуры СУЗ

НУ56 - пульт клавиатур УВС

НУ57, НУ58 - пульт черно-белых дисплеев

НУ59, НУ59а - дисплей СВРК

НУ60, НУ61 - цветные дисплеи

НУ62, НУ63 - пульты клавиатур УВС

НУ64, НУ66 - пульты клавиатур УВС

НУ65 - пульт аппаратуры защит турбины и ТПН

НУ67, НУ68 - пульт черно-белых дисплеев УВС

НУ69 - пульт аппаратуры ФГУ и АСУТ-1000

НУ74, НУ75 - пульт ЗНС. Клавиатура УВС

НУ75а - пульт ЗНС. Черно-белый дисплей УВС

НУ76 - пульт ЗНС. Цветной дисплей УВС

НZ12-HZ15 - панели противопожарной автоматики

Общая компоновка БЩУ энергоблока ОП ЗАЭС представлена на рисунке 47.

Рисунок 47 - Общая компоновка БЩУ

На левых пультах располагается аппаратура, относящая к реакторной установке. За этими пультами предусматривается рабочее место, являющееся постоянной зоной действия оператора реакторной установки.

На правых пультах расположена аппаратура, относящая к машинному залу, и предусматривается рабочее место оператора турбинного отделения.

На рабочем месте начальника смены блока расположены клавиатуры и дисплеи РМОТ НСБ.

На блочном щите основными средствами представления информации обслуживающему персоналу являются цветные графические дисплеи РМОТ-03, расположенные на конструктивах типа «тумба», в одном из которых расположен процессорный модуль.

На пультах операторов размещаются функциональные клавиатуры РМОТ-03. Кроме того, на рабочем месте ВИУР установлены дисплеи и клавиатуры двух комплектов СВРК и дисплей АКНП


На панелях реакторного отделения и машинного отделения в верхней части расположены табло технологической сигнализации, резервирующие основной способ представления информации оператору.

Индикаторы перемещения блоков детектирования;

Индикаторы контроля работы диапазонов измерения плотности нейтронного потока (ДИ, ПД, ЭД);

Индикаторы контроля плотности нейтронного потока в ДИ при проведении перегрузки топлива (блинкера СКП и РЩУ);

Самописцы РП-160 мощности и периода изменения нейтронного потока .

Рисунок 4.5- Панель HY 17

Сигнализация срабатывания АЗ, ПЗ, УРБ,

Приборы контроля электропитания СУЗ,

Указатели положения ОР СУЗ в активной зоне реактора,

Ключи съема фиксации, запитки АЗ

Рисунок 66 - Общий вид оперативной панели БЩУ HY-10 - Система подпитки-продувки первого контура -ТК

Пост ВИУР расположен в левой части БЩУ.

На пульте располагаются аппаратура системы управления и защиты реактора (СУЗ), контроля нейтронного потока в реакторе (АКНП), внутриреакторного контроля.

На пультах ВИУР расположены наиболее часто используемые органы управления оборудованием РО. Внешний вид пульта управления регуляторами РО и функциональной клавиатуры РМОТ-03 представлен на рисунке 48.

РМОТ - рабочее место оператора-технолога;

Рисунок 4.2 - Общий вид рабочего места ВИУР.

Панель контроля работы РОМ;

Картограмма размещения приводов СУЗ в активной зоне реактора;

Ключи управления приводами СУЗ в индивидуальном и групповом режимах.

Рисунок 43 - Фрагмент РМОТ YA00M «Первый контур»


Устройство АРМ-5С обеспечивает следующие режимы работы:

Режим астатического поддержания нейтронной мощности (режим «Н» );

Режим астатического поддержания теплотехнического параметра воздействием на ОР СУЗ (режим «Т» );

Режим поддержания теплотехнического параметра по компромиссной программе (режим «К» );

Стерегущий режим поддержания теплотехнического параметра воздействием на ОР СУЗ (режим «С» ).

Канал регулирования мощности реактора по нейтронной мощности РРН предназначен для стабилизации нейтронного потока в ректоре на заданном уровне со статической точностью ± 2% от заданного значения (режим «Н») путем перемещения органов регулирования реактора. Если регулятор работает в этом режиме, то поддержание давления пара перед турбиной при необходимости осуществляется дистанционно или автоматически с помощью системы регулирования турбины.

Канал регулирования мощности реактора по теплотехническому параметру РРТ предназначен для стабилизации теплотехнического параметра (давление пара перед турбиной) на заданном уровне со статической точностью ± 0,5 кгс/см 2 путем воздействия на мощность реактора перемещением ОР (режим «Т» ). Поскольку основной причиной изменения давления пара перед турбиной являются колебания мощности, данный регулятор поддерживает тепловую мощность реактора в соответствии с требуемой мощностью турбины.

При работе устройства в режиме «С» осуществляется снижение мощности реактора при увеличении значения давления по сравнению с заданным значением. Зона нечувствительности регулятора РРТ для режима «С» - +1 кгс/см 2 . Увеличение мощности реактора при работе регулятора в этом режиме не производится. Включение АРМ-5С в режим «С» осуществляется только из режима «Т».

При работе устройства АРМ-5С в режиме «К» на уровне мощности, меньшей некоторой тепловой мощности Q 0 , осуществляется поддержание постоянного давления в главном паровом коллекторе, а при уровне мощности большей Q 0 , осуществляется поддержание постоянной температуры теплоносителя в реакторе.

Примечание - В конструкции регулятора АРМ-5С режим стабилизации давления пара с автоматическим изменением его заданного значения (режим «К») в настоящее время не используется.

Блокировки АРМ

Автоматический переход из режима "Н" в режим "Т", по превышению давления пара в ГПК на 1,5-2,0 кгс/см 2

Автоматический переход из режима"Т" в режим "Н", при N>Nзад.;

Отключается от автоматического управления реактором и переходит в режим "Н" при появлении сигнала ПЗ-1. После снятия сигнала ПЗ-1 АРМ подключается к автоматическому управлению реактором в режиме "Н".

Пост ВИУТ расположен в правой части БЩУ.

На пультах ВИУТ расположены наиболее часто используемые органы управления оборудованием ТО. Внешний вид пульта рабочего места ВИУТ и видеотерминалов РМОТ-03 представлен на рисунке 49.

Рисунок 49 - Пульт управления регуляторами ТО и видеотерминалы РМОТ-03

Перед пультами расположены оперативные панели, на которых размещаются самопишущие и показывающие приборы, необходимые оператору для ведения технологического процесса, а также органы управления соответствующим технологическим оборудованием.

Рисунок 27 Фрагмент РМОТ "R000M" Второй контур

Страница 17 из 61

Для обеспечения возможности управления реактором на пульте оператора и панелях, размещенных в помещении блочного щита управления, имеются органы управления (кнопки, ключи) и сигнальные приборы (табло, индикаторы, сигнальные лампы).
В первую очередь это приборы, относящиеся к аварийной защите, т. е. кнопки (ключи), воздействием на которые оператор может вызвать срабатывание АЗ Обычно устанавливаются две кнопки (ключа) АЗ каждого рода, с тем чтобы выход из строя одного ключа (кнопки) не привел к непрохождению аварийного сигнала. Кроме того, эти ключи и кнопки закрываются съемными крышками во избежание ложного срабатывания защиты при случайных прикосновениях.
На панели, которая устанавливается, как правило, непосредственно за пультом оператора, размещены табло сигнализации срабатывания АЗ и первопричины срабатывания АЗ. На этой же панели размещают и индикаторы положения исполнительных органов реактора. Таким образом, оператор имеет возможность убедиться в срабатывании аварийной защиты, проследив за ее воздействием на исполнительные органы реактора.
На той же секции пульта оператора, что и кнопки (ключи) АЗ, устанавливают и приборы управления исполнительными органами реактора. К ним относятся ключи управления, кнопки выбора, индикаторные лампы или светодиоды, подтверждающие правильность выбора оператором того или иного исполнительного механизма.
Рассмотрим, как организуется управление исполнительными органами реактора на примере реактора ВВЭР-1000 V бока НВ АЭС
Как уже упоминалось, исполнительные органы этого реактора универсальные и разбиты на несколько групп. Управление отдельными приводами может осуществляться только дистанционно с пульта оператора (индивидуальное управление). В связи с тем, что количество приводов велико (от 49 до 109 в различных модификациях реактора ВВЭР-1000), выбор отдельного привода для управления осуществляется по координатам, на которые разбита активная зона реактора (рис. 6.12). Каждой координате х (16, 18, ..., 38, 40) и координате у (01, 02, ..., 13, 14) соответствует своя кнопка, установленная на пульте оператора При нажатии кнопок х и у устройства управления соответствующего привода получают команду разрешения движения. Это сигнализируется зажиганием светодиода на картограмме активной зоны реактора, имеющейся на пульте оператора. Собранная схема выбора привода может быть отключена нажатием на кнопку «Сброс», имеющуюся на пульте оператора.
Однако для начала движения исполнительного органа получения команды разрешения движения недостаточно. Необходима подача исполнительной команды «больше» или «меньше», которая подается отдельным ключом индивидуального управления, имеющимся также на пульте оператора. О том, что данный исполнительный орган начал движение, оператор может судить по показаниям индикаторов положения.
При выборе того или иного исполнительного органа для индивидуального управления он исключается из состава группы. После завершения индивидуальной работы он возвращается в состав своей группы.
Выбор для управления той или иной группы осуществляется кнопками, число которых равно числу групп С помощью ключей управления, установленных на пульте, оператор имеет возможность любую выбранную таким образом группу подключить к управлению от регулятора мощности. Одновременно он имеет возможность управлять другой выбранной группой вручную с помощью ключа группового управления.
Как при работе от регулятора мощности, так и при ручном групповом управлении в том случае, если группа дошла до НПВ или ВПВ (см. рис. 6.1), автоматически начинает движение вместе с движущейся еще одна группа. При движении вверх-это группа с номером на единицу больше номера движущейся группы, а при движении вниз-на единицу меньше. После достижения группой НКВ или ВКВ движение продолжает уже новая группа.
В тех случаях, когда реактор имеет универсальные исполнительные органы, как, например, реакторы типа ВВЭР, система СУЗ должна обеспечивать приоритетность сигналов управления, причем наивысшим приоритетом обладают сигналы АЗ, затем сигналы ручного управления и далее сигналы от СРМ.
Рядом с приборами индивидуального и группового управления исполнительными органами реактора размещают и устройства управления СРМ. С помощью этих устройств осуществляется включение СРМ в тот или иной режим, перевод с дистанционного управления органами регулирования реактора в автоматический, а также контроль за правильностью работы регулятора, его исправность. К органам управления регулятором относятся ключ «дистанционно-автоматически» и кнопки выбора режима.
Рассмотрим на примере регулятора АРМ5 работу оператора по введению его в действие. Перед включением регулятора ключ «дистанционно-автоматически» находится в положении «дистанционно».
Убедившись по сигнальным лампам, расположенным на панели регулятора, что электропитание на регулятор подано (подача электропитания осуществляется выключателями, размещенными на лицевых панелях регулятора), оператор нажимает кнопку выбора режима Н или Т.
Выбор режима С или К осуществляется только после нажатия кнопки Т. После того как зажглись сигнальные лампы выбора режима всех трех каналов, регулятор готов к работе. Оператор может перевести ключ «дистанционно-автоматически» в положение «автоматически». Включение произойдет безударно, так как регулятор отслеживает текущее значение параметра, которое становится заданным в момент перевода ключа в положение «автоматически». С помощью сигнальных ламп «больше», «меньше» трех каналов оператор может судить об исправности каждого из трех каналов регулятора. Действительно, если два канала дают одинаковые сигналы, например «больше», а третий «меньше», то это значит, что. третий канал неисправен.
Если применяемый на энергоблоке регулятор не имеет безударного включения и оснащен ручным задатчиком, то перед включением такого регулятора в работу оператор должен уравнять текущее значение параметра с заданным и только после этого включать его в автоматический режим.

Цепная реакция деления всегда сопровождается выделением энергии огромной величины. Практическое использование этой энергии – основная задача ядерного реактора.

Ядерный реактор – это устройство, в котором осуществляется контролируемая, или управляемая, ядерная реакция деления .

По принципу работы ядерные реакторы делят на две группы: реакторы на тепловых нейтронах и реакторы на быстрых нейтронах.

Как устроен ядерный реактор на тепловых нейтронах

В типичном ядерном реакторе имеются:

  • Активная зона и замедлитель;
  • Отражатель нейтронов;
  • Теплоноситель;
  • Система регулирования цепной реакции, аварийная защита;
  • Система контроля и радиационной защиты;
  • Система дистанционного управления.

1 - активная зона; 2 - отражатель; 3 - защита; 4 - регулирующие стержни; 5 - теплоноситель; 6 - насосы; 7 - теплообменник; 8 - турбина; 9 - генератор; 10 - конденсатор.

Активная зона и замедлитель

Именно в активной зоне и протекает контролируемая цепная реакция деления.

Большинство ядерных реакторов работает на тяжёлых изотопах урана-235. Но в природных образцах урановой руды его содержание составляет всего лишь 0,72%. Этой концентрации недостаточно для того, чтобы цепная реакция развивалась. Поэтому руду искусственно обогащают, доводя содержание этого изотопа до 3%.

Делящееся вещество, или ядерное топливо, в виде таблеток помещается в герметично закрытые стержни, которые называются ТВЭЛы (тепловыделяющие элементы). Они пронизывают всю активную зону, заполненную замедлителем нейтронов.

Зачем нужен замедлитель нейтронов в ядерном реакторе?

Дело в том, что рождающиеся после распада ядер урана-235 нейтроны имеют очень высокую скорость. Вероятность их захвата другими ядрами урана в сотни раз меньше вероятности захвата медленных нейтронов. И если не уменьшить их скорость, ядерная реакция может затухнуть со временем. Замедлитель и решает задачу снижения скорости нейтронов. Если на пути быстрых нейтронов разместить воду или графит, их скорость можно искусственно снизить и увеличить таким образом число захватываемых атомами частиц. При этом для цепной реакции в реакторе понадобится меньшее количество ядерного топлива.

В результате процесса замедления образуются тепловые нейтроны , скорость которых практически равна скорости теплового движения молекул газа при комнатной температуре.

В качестве замедлителя в ядерных реакторах используется вода, тяжёлая вода (оксид дейтерия D 2 O ), бериллий, графит. Но наилучшим замедлителем является тяжелая вода D 2 O.

Отражатель нейтронов

Чтобы избежать утечки нейтронов в окружающую среду, активную зону ядерного реактора окружают отражателем нейтронов . В качестве материала для отражателей часто используют те же вещества, что и в замедлителях.

Теплоноситель

Тепло, выделяющееся во время ядерной реакции, отводится с помощью теплоносителя. В качестве теплоносителя в ядерных реакторах часто используют обычную природную воду, предварительно очищенную от различных примесей и газов. Но поскольку вода закипает уже при температуре 100 0 С и давлении 1 атм, то для того чтобы повысить температуру кипения, повышают давление в первом контуре теплоносителя. Вода первого контура, циркулирующая через активную зону реактора, омывает ТВЭЛы, нагреваясь при этом до температуры 320 0 С. Далее внутри теплообменника она отдаёт тепло воде второго контура. Обмен проходит через теплообменные трубки, поэтому соприкосновения с водой второго контура не происходит. Это исключает попадание радиоактивных веществ во второй контур теплообменника.

А далее всё происходит так, как на тепловой электростанции. Вода во втором контуре превращается в пар. Пар вращает турбину, которая приводит в движение электрогенератор, который и вырабатывает электрический ток.

В тяжеловодных реакторах теплоносителем служит тяжёлая вода D 2 O, а в реакторах с жидкометаллическими теплоносителями - расплавленный металл.

Система регулирования цепной реакции

Текущее состояние реактора характеризует величина, называемая реактивностью.

ρ = ( k -1)/ k ,

k = n i / n i -1 ,

где k – коэффициент размножения нейтронов,

n i - количество нейтронов следующего поколения в ядерной реакции деления,

n i -1 , - количество нейтронов предыдущего поколения в этой же реакции.

Если k ˃ 1 , цепная реакция нарастает, система называется надкритическо й. Если k < 1 , цепная реакция затухает, а система называется подкритической . При k = 1 реактор находится в стабильном критическом состоянии , так как число делящихся ядер не меняется. В этом состоянии реактивность ρ = 0 .

Критическое состояние реактора (необходимый коэффициент размножения нейтронов в ядерном реакторе) поддерживается перемещением регулирующих стержней . В материал, из которого они изготовлены, входят вещества-поглотители нейтронов. Выдвигая или вдвигая эти стержни в активную зону, контролируют скорость реакции ядерного деления.

Система управления обеспечивает управление реактором при его пуске, плановой остановке, работе на мощности, а также аварийную защиту ядерного реактора. Это достигается изменением положения управляющих стержней.

Если какой-нибудь из параметров реактора (температура, давление, скорость нарастания мощности, расход топлива и др.) отклоняется от нормы, и это может привести к аварии, в центральную часть активной зоны сбрасываются специальные аварийные стержни и происходит быстрое прекращение ядерной реакции.

За тем, чтобы параметры реактора соответствовали нормам, следят системы контроля и радиационной защиты .

Для защиты окружающей среды от радиоактивного излучения реактор помещают в толстый бетонный корпус.

Системы дистанционного управления

Все сигналы о состоянии ядерного реактора (температуре теплоносителя, уровне излучения в разных частях реактора и др.) поступают на пульт управления реактора и обрабатываются в компьютерных системах. Оператор получает всю необходимую информацию и рекомендации по устранению тех или иных отклонений.

Реакторы на быстрых нейтронах

Отличие реакторов этого типа от реакторов на тепловых нейтронах в том, что быстрые нейтроны, возникающие после распада урана-235 не замедляются, а поглощаются ураном-238 с последующим превращением его в плутоний-239. Поэтому реакторы на быстрых нейтронах используют для получения оружейного плутония-239 и тепловой энергии, которую генераторы атомной станции преобразуют в электрическую энергию.

Ядерным топливом в таких реакторах служит уран-238, а сырьём уран-235.

В природной урановой руде 99,2745 % приходятся на долю урана-238. При поглощении теплового нейтрона он не делится, а становится изотопом урана-239.

Через некоторое время после β-распада уран-239 превращается в ядро нептуния-239:

239 92 U → 239 93 Np + 0 -1 e

После второго β-распада образуется делящийся плутоний-239:

239 9 3 Np → 239 94 Pu + 0 -1 e

И, наконец, после альфа-распада ядра плутония-239 получают уран-235:

239 94 Pu → 235 92 U + 4 2 He

ТВЭЛы с сырьём (обогащённым ураном-235) располагаются в активной зоне реактора. Эта зона окружена зоной воспроизводства, которая представляет собой ТВЭЛы с топливом (обедненным ураном-238). Быстрые нейтроны, вылетающие из активной зоны после распада урана-235, захватываются ядрами урана-238. В результате образуется плутоний-239. Таким образом, в реакторах на быстрых нейтронах производится новое ядерное топливо.

В качестве теплоносителей в ядерных реакторах на быстрых нейтронах применяют жидкие металлы или их смеси.

Классификация и применение ядерных реакторов

Основное применение ядерные реакторы нашли на атомных электростанциях. С их помощью получают электрическую и тепловую энергию в промышленных масштабах. Такие реакторы называют энергетическими .

Широко используются ядерные реакторы в двигательных установках современных атомных подводных лодок, надводных кораблей, в космической технике. Они снабжают электрической энергией двигатели и называются транспортными реакторами .

Для научных исследований в области ядерной физики и радиационной химии используют потоки нейтронов, гамма-квантов, которые получают в активной зоне исследовательских реакторов. Энергия, вырабатываемая ими, не превышает 100 Мвт и не используется в промышленных целях.

Мощность экспериментальных реакторов ещё меньше. Она достигает величины лишь нескольких кВт. На этих реакторах изучаются различные физические величины, значение которых важно при проектировании ядерных реакций.

К промышленным реакторам относят реакторы для получения радиоактивных изотопов, используемых для медицинских целей, а также в различных областях промышленности и техники. Реакторы для опреснения морской воды также относятся к промышленным реакторам.