Построить график y x sinx. Построение и исследование графика тригонометрической функции y=sinx в табличном процессоре MS Excel

Как построить график функции y=sin x? Для начала рассмотрим график синуса на промежутке .

Единичный отрезок берём длиной 2 клеточки тетради. На оси Oy отмечаем единицу.

Для удобства число π/2 округляем до 1,5 (а не до 1,6, как требуется по правилам округления). В этом случае отрезку длиной π/2 соответствуют 3 клеточки.

На оси Ox отмечаем не единичные отрезки, а отрезки длиной π/2 (через каждые 3 клеточки). Соответственно, отрезку длиной π соответствует 6 клеточек, отрезку длиной π/6 — 1 клеточка.

При таком выборе единичного отрезка график, изображённый на листе тетради в клеточку, максимально соответствует графику функции y=sin x.

Составим таблицу значений синуса на промежутке :

Полученные точки отметим на координатной плоскости:

Так как y=sin x — нечётная функция, график синуса симметричен относительно начала отсчёта — точки O(0;0). С учётом этого факта продолжим построение графика влево, то точки -π:

Функция y=sin x — периодическая с периодом T=2π. Поэтому график функции, взятый на на промежутке [-π;π], повторяется бесконечное число раз вправо и влево.

, Конкурс «Презентация к уроку»

Презентация к уроку












Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Железо ржавеет, не находя себе применения,
стоячая вода гниет или на холоде замерзает,
а ум человека, не находя себе применения, чахнет.
Леонардо да Винчи

Используемые технологии: проблемного обучения, критического мышления, коммуникативного общения.

Цели:

  • Развитие познавательного интереса к обучению.
  • Изучение свойств функции у = sin x.
  • Формирование практических навыков построения графика функции у = sin x на основе изученного теоретического материала.

Задачи:

1. Использовать имеющийся потенциал знаний о свойствах функции у = sin x в конкретных ситуациях.

2. Применять осознанное установление связей между аналитической и геометрической моделями функции у = sin x.

Развивать инициативу, определенную готовность и интерес к поиску решения; умение принимать решения, не останавливаться на достигнутом, отстаивать свою точку зрения.

Воспитывать у учащихся познавательную активность, чувство ответственности, уважения друг к другу, взаимопонимания, взаимоподдержки, уверенности в себе; культуру общения.

Ход урока

1 этап. Актуализация опорных знаний, мотивация изучения нового материала

"Вход в урок".

На доске написаны 3 утверждения:

  1. Тригонометрическое уравнение sin t = a всегда имеет решения.
  2. График нечетной функции можно построить с помощью преобразования симметрии относительно оси Оу.
  3. График тригонометрической функции можно построить, используя одну главную полуволну.

Учащиеся обсуждают в парах: верны ли утверждения? (1 минута). Затем результаты первоначального обсуждения (да, нет) вносятся в таблицу в столбец "До".

Учитель ставит цели и задачи урока.

2. Актуализация знаний (фронтально на модели тригонометрического круга ).

Мы уже познакомились с функцией s = sin t.

1) Какие значения может принимать переменная t. Какова область определения этой функции?

2) В каком промежутке заключены значения выражения sin t. Найти наибольшее и наименьшее значения функции s = sin t.

3) Решите уравнение sin t = 0.

4) Что происходит с ординатой точки при ее движении по первой четверти? (ордината увеличивается). Что происходит с ординатой точки при ее движении по второй четверти? (ордината постепенно уменьшается). Как это связано с монотонностью функции? (функция s = sin t возрастает на отрезке и убывает на отрезке ).

5) Запишем функцию s = sin t в привычном для нас виде у = sin x (строить будем в привычной системе координат хОу) и составим таблицу значений этой функции.

х 0
у 0 1 0

2 этап. Восприятие, осмысление, первичное закрепление, непроизвольное запоминание

4 этап. Первичная систематизация знаний и способов деятельности, их перенос и применение в новых ситуациях

6. № 10.18 (б,в)

5 этап. Итоговый контроль, коррекция, оценка и самооценка

7. Возвращаемся к утверждениям (начало урока), обсуждаем, используя свойства тригонометрической функции у = sin x, и заполняем в таблице столбец "После".

8. Д/з: п.10, №№ 10.7(а), 10.8(б), 10.11(б), 10.16(а)

«Йошкар-Олинский техникум сервисных технологий»

Построение и исследование графика тригонометрической функции y=sinx в табличном процессоре MS Excel

/методическая разработка/

Йошкар – Ола

Тема . Построение и исследование графика тригонометрической функции y = sinx в табличном процессоре MS Excel

Тип урока – интегрированный (получение новых знаний)

Цели:

Дидактическая цель - исследовать поведение графиков тригонометрической функции y = sinx в зависимости от коэффициентов с помощью компьютера

Обучающие:

1. Выяснить изменение графика тригонометрической функции y = sin x в зависимости от коэффициентов

2. Показать внедрение компьютерных технологий в обучение математике, интеграцию двух предметов: алгебры и информатики.

3. Формировать навыки использования компьютерных технологий на уроках математики

4. Закрепить навыки исследования функций и построения их графиков

Развивающие:

1. Развивать познавательный интерес учащихся к учебным дисциплинам и умение применять свои знания в практических ситуациях

2. Развивать умения анализировать, сравнивать, выделять главное

3. Способствовать повышению общего уровня развития студентов

Воспитывающие :

1. Воспитывать самостоятельность, аккуратность, трудолюбие

2. Воспитывать культуру диалога

Формы работы на уроке – комбинированная

Дидактическое оснащение и оборудование:


1. Компьютеры

2. Мультимедийный проектор

4. Раздаточный материал

5. Слайды презентации

Ход урока

I . Организация начала урока

· Приветствие студентов и гостей

· Настрой на урок

II . Целеполагание и актуализация темы

Для исследования функции и построения ее графика требуется много времени, приходится выполнять много громоздких вычислений, это не удобно, на помощь приходят компьютерные технологии.

Сегодня мы научимся строить графики тригонометрических функций в среде табличного процессора MS Excel 2007.

Тема нашего занятия «Построение и исследование графика тригонометрической функцииy = sinx в табличном процессоре»

Из курса алгебры нам известна схема исследования функции и построения ее графика. Давайте вспомним как это сделать.

Слайд 2

Схема исследования функции

1. Область определения функции (D(f))

2. Область значения функции Е(f)

3. Определение четности

4. Периодичность

5. Нули функции (y=0)

6. Промежутки знакопостоянства (у>0, y<0)

7. Промежутки монотонности

8. Экстремумы функции

III . Первичное усвоение нового учебного материала

Откройте программу MS Excel 2007.

Построим график функции y=sinx

Построение графиков в табличном процессоре MS Excel 2007

График данной функции будем строить на отрезке x Є [-2π; 2π]

Значения аргумента будем брать с шагом, чтобы график получился более точным.

Т. к. редактор работает с числами, переведем радианы в числа, зная что П ≈ 3,14 . (таблица перевода в раздаточном материале).

1. Находим значение функции в точке х=-2П. Для остальных значение аргумента соответствующие значения функции редактор вычисляет автоматически.

2. Теперь у нас имеется таблица со значениями аргумента и функции. С помощью этих данных мы должны построить график этой функции с помощью мастера диаграмм.

3. Для построения графика надо выделить нужный диапазон данных, строки со значениями аргумента и функции

4..jpg" width="667" height="236 src=">

Выводы записываем в тетрадь (Слайд 5)

Вывод. График функции вида у=sinx+k получается из графика функции у=sinx с помощью параллельного переноса вдоль оси ОУ на k единиц

Если k >0, то график смещается вверх на k единиц

Если k<0, то график смещается вниз на k единиц

Построение и исследование функции вида у= k *sinx, k - const

Задание 2. На рабочем Листе2 в одной системе координат постройте графики функций y = sinx y =2* sinx , y = * sinx , на интервале (-2π; 2π) и проследите как изменяется вид графика.


(Чтобы заново не задавать значение аргумента давайте скопируем имеющиеся значения. Теперь вам надо задать формулу, и по полученной таблице построить график.)

Сравниваем полученные графики. Разбираем вместе с обучающимися поведение графика тригонометрической функции в зависимости от коэффициентов. (Слайд 6)

https://pandia.ru/text/78/510/images/image005_66.gif" width="16" height="41 src=">x , на интервале (-2π; 2π) и проследите как изменяется вид графика.

Сравниваем полученные графики. Разбираем вместе с обучающимися поведение графика тригонометрической функции в зависимости от коэффициентов. (Слайд 8)

https://pandia.ru/text/78/510/images/image008_35.jpg" width="649" height="281 src=">

Выводы записываем в тетрадь (Слайд 11)

Вывод. График функции вида у= sin(x+k) получается из графика функции у=sinx с помощью параллельного переноса вдоль оси ОХ на k единиц

Если k >1, то график смещается вправо вдоль оси ОХ

Если 0

IV . Первичное закрепление полученных знаний

Дифференцированные карточки с заданием на построение и исследование функции при помощи графика

Y=6 *sin(x)

Y= 1-2 sin х

Y= - sin (3х+ )

1. Область определения

2. Область значения

3. Четность

4. Периодичность

5. Промежутки знакопостоянства

6. Промежутки монотонности

Функция возрастает

Функция

убывает

7. Экстремумы функции

Минимум

Максимум

V . Организация домашнего задания

Построить график функции y=-2*sinх+1 , исследовать и проверить правильность построения в среде электронной таблицы Microsoft Excel. (Слайд 12)

VI . Рефлексия

ГРАФИКИ ФУНКЦИЙ

Функция синус


— множество R всех действительных чисел.

Множество значений функции — отрезок [-1; 1], т.е. синус функция — ограниченная .

Функция нечетная: sin(−x)=−sin x для всех х ∈ R .

Функция периодическая

sin(x+2π· k) = sin x, где k ∈ Z для всех х ∈ R .

sin x = 0 при x = π·k , k ∈ Z .

sin x > 0 (положительная) для всех x ∈ (2π·k , π+2π·k ), k ∈ Z .

sin x < 0 (отрицательная) для всех x ∈ (π+2π·k , 2π+2π·k ), k ∈ Z .

Функция косинус


Область определения функции
— множество R всех действительных чисел.

Множество значений функции — отрезок [-1; 1], т.е. косинус функция — ограниченная .

Функция четная: cos(−x)=cos x для всех х ∈ R .

Функция периодическая с наименьшим положительным периодом 2π :

cos(x+2π· k ) = cos x, где k Z для всех х ∈ R .

cos x = 0 при
cos x > 0 для всех
cos x < 0 для всех
Функция возрастает от −1 до 1 на промежутках:
Функция убывает от −1 до 1 на промежутках:
Наибольшее значение функции sin x = 1 в точках:
Наименьшее значение функции sin x = −1 в точках:

Функция тангенс

Множество значений функции — вся числовая прямая, т.е. тангенс — функция неограниченная .

Функция нечетная: tg(−x)=−tg x
График функции симметричен относительно оси OY.

Функция периодическая с наименьшим положительным периодом π , т.е. tg(x+π· k ) = tg x, k Z для всех х из области определения.

Функция котангенс

Множество значений функции — вся числовая прямая, т.е. котангенс — функция неограниченная .

Функция нечетная: ctg(−x)=−ctg x для всех х из области определения.
График функции симметричен относительно оси OY.

Функция периодическая с наименьшим положительным периодом π , т.е. ctg(x+π· k )=ctg x, k Z для всех х из области определения.

Функция арксинус


Область определения функции
— отрезок [-1; 1]

Множество значений функции — отрезок -π /2 arcsin x π /2, т.е. арксинус — функция ограниченная .

Функция нечетная: arcsin(−x)=−arcsin x для всех х ∈ R .
График функции симметричен относительно начала координат.

На всей области определения.

Функция арккосинус


Область определения функции
— отрезок [-1; 1]

Множество значений функции — отрезок 0 arccos x π , т.е. арккосинус — функция ограниченная .


Функция является возрастающей на всей области определения.

Функция арктангенс


Область определения функции
— множество R всех действительных чисел.

Множество значений функции — отрезок 0 π, т.е. арктангенс — функция ограниченная .

Функция нечетная: arctg(−x)=−arctg x для всех х ∈ R .
График функции симметричен относительно начала координат.

Функция является возрастающей на всей области определения.

Функция арккотангенс


Область определения функции
— множество R всех действительных чисел.

Множество значений функции — отрезок 0 π, т.е. арккотангенс — функция ограниченная .

Функция не является ни четной, ни нечетной.
График функции несимметричен ни относительно начала координат, ни относительно оси Оy.

Функция является убывающей на всей области определения.

Мы выяснили, что поведение тригонометрических функций, и функции у = sin х в частности, на всей числовой прямой (или при всех значениях аргумента х ) полностью определяется ее поведением в интервале 0 < х < π / 2 .

Поэтому прежде всего мы построим график функции у = sin х именно в этом интервале.

Составим следующую таблицу значений нашей функции;

Отмечая соответствующие точки на плоскости координат и соединяя их плавной линией, мы получаем кривую, представленную на рисунке

Полученную кривую можно было бы построить и геометрически, не составляя таблицы значений функции у = sin х .

1.Первую четверть окружности радиуса 1 разделим на 8 равных частей.Ординаты точек деления окружности представляют собой синусы соответствующих углов.

2.Первая четверть окружности соответствует углам от 0 до π / 2 . Поэтому на оси х возьмем отрезок и разделим его на 8 равных частей.

3.Проведем прямые, параллельные оси х , а из точек деления восставим перпендикуляры до пересечения с горизонтальными прямыми.

4.Точки пересечения соединим плавной линией.

Теперь обратимся к интервалу π / 2 < х < π .
Каждое значение аргумента х из этого интервала можно представить в виде

x = π / 2 + φ

где 0 < φ < π / 2 . По формулам приведения

sin ( π / 2 + φ ) = соsφ = sin ( π / 2 - φ ).

Точки оси х с абциссами π / 2 + φ и π / 2 - φ симметричны друг другу относительно точки оси х с абсциссой π / 2 , и синусы в этих точках одинаковы. Это позволяет получить график функции у = sin х в интервале [ π / 2 , π ] путем простого симметричного отображения графика этой функции в интервале относительно прямой х = π / 2 .

Теперь, используя свойство нечетности функции у = sin х,

sin (- х ) = - sin х ,

легко построить график этой функции в интервале [- π , 0].

Функция у = sin х периодична с периодом 2π ;. Поэтому для построения всего графика этой функции достаточно кривую, изображенную на рисунке, продолжить влево и вправо периодически с периодом .

Полученная в результате этого кривая называется синусоидой . Она и представляет собой график функции у = sin х.

Рисунок хорошо иллюстрирует все те свойства функции у = sin х , которые раньше были доказаны нами. Напомним эти свойства.

1) Функция у = sin х определена для всех значений х , так что областью ее определения является совокупность всех действительных чисел.

2) Функция у = sin х ограничена. Все значения, которые она принимает, заключены в интервале от -1 до 1, включая эти два числа. Следовательно, область изменения этой функции определяется неравенством -1< у < 1. При х = π / 2 + 2kπ функция принимает наибольшие значения, равные 1, а при х = - π / 2 + 2kπ - наименьшие значения, равные - 1.

3) Функция у = sin х является нечетной (синусоида симметрична относительно начала координат).

4) Функция у = sin х периодична с периодом 2π .

5) В интервалах 2nπ < x < π + 2nπ (n - любое целое число) она положительна, а в интервалах π + 2kπ < х < 2π + 2kπ (k - любое целое число) она отрицательна. При х = kπ функция обращается в нуль. Поэтому эти значения аргумента х (0; ±π ; ±2π ; ...) называются нулями функции у = sin x

6) В интервалах - π / 2 + 2nπ < х < π / 2 + 2nπ функция у = sin x монотонно возрастает, а в интервалах π / 2 + 2kπ < х < 3π / 2 + 2kπ она монотонно убывает.

Cледует особо обратить внимание на поведение функции у = sin x вблизи точки х = 0 .

Например, sin 0,012 0,012; sin (-0,05) -0,05;

sin 2° = sin π 2 / 180 = sin π / 90 0,03 0,03.

Вместе с тем следует отметить, что при любых значениях х

| sin x | < | x | . (1)

Действительно, пусть радиус окружности, представленной на рисунке, равен 1,
a / AОВ = х .

Тогда sin x = АС. Но АС < АВ, а АВ, в свою очередь, меньше длины дуги АВ, на которую опирается угол х . Длина этой дуги равна, очевидно, х , так как радиус окружности равен 1. Итак, при 0 < х < π / 2

sin х < х.

Отсюда в силу нечетности функции у = sin x легко показать, что при - π / 2 < х < 0

| sin x | < | x | .

Наконец, при x = 0

| sin x | = | x |.

Таким образом, для | х | < π / 2 неравенство (1) доказано. На самом же деле это неравенство верно и при | x | > π / 2 в силу того, что | sin х | < 1, а π / 2 > 1

Упражнения

1.По графику функции у = sin x определить: a) sin 2; б) sin 4; в) sin (-3).

2.По графику функции у = sin x определить, какое число из интервала
[ - π / 2 , π / 2 ] имеет синус, равный: а) 0,6; б) -0,8.

3. По графику функции у = sin x определить, какие числа имеют синус,
равный 1 / 2 .

4. Найти приближенно (без использования таблиц): a) sin 1°; б) sin 0,03;
в) sin (-0,015); г) sin (-2°30").