Большой адронный коллайдер - зачем он нужен? Большой Адронный Коллайдер (БАК или LHC) Что будет если взорвется коллайдер.

История создания ускорителя, который мы знаем сегодня как большой адронный коллайдер, начинается ещё с 2007 года. Изначально хронология ускорителей началась с циклотрона. Прибор представлял собой небольшое устройство, которое легко умещалось на столе. Затем история ускорителей стала стремительно развиваться. Появился синхрофазотрон и синхротрон.

В истории, пожалуй, самым занимательным стал период с 1956 по 1957 годы. В те времена советская наука, в частности физика, не отставала от зарубежных братьев. Используя наработанный годами опыт, советский физик по имени Владимир Векслер совершил прорыв в науке. Им был создан самый мощный по тем временам синхрофазотрон. Его рабочая мощность была равна 10 гигаэлектронвольт (10 миллиардов электронвольт). После этого открытия создавались уже серьёзные образцы ускорителей: большой электронно-позитронный коллайдер, Швейцарский ускоритель, в Германии, США. Все они имели одну общую цель — изучение фундаментальных частиц кварков.

Большой адронный коллайдер был создан в первую очередь благодаря стараниям итальянского физика. Имя ему Карло Руббиа, лауреат Нобелевской премии. Во время своей деятельности Руббиа работал директором в Европейской организации по ядерным исследованиям. Решено было построить и запустить адронный коллайдер именно на месте центра исследований.

Где адронный коллайдер?

Коллайдер размещён на границе между Швейцарией и Францией. Длина его окружности составляет 27 километров, поэтому его и называют большим. Кольцо ускорителя уходит вглубь от 50 до 175 метров. В коллайдере установлено 1232 магнита. Они являются сверхпроводящими, а значит из них можно выработать максимальное поле для разгона, так как затраты энергии в таких магнитах практически отсутствуют. Общий вес каждого магнита составляет 3,5 тонны при длине 14,3 метра.

Как и любой физический объект, большой адронный коллайдер выделяет тепло. Поэтому его необходимо постоянно остужать. Для этого поддерживается температура 1,7 К с помощью 12 миллионов литров жидкого азота. Помимо этого, для охлаждения используется (700 тысяч литров), и самое важное - используется давление, которое в десять раз ниже нормального атмосферного.

Температура 1,7 К по шкале Цельсия составляет -271 градус. Такая температура почти близка к называется минимально возможный предел, который может иметь физическое тело.

Внутренняя часть тоннеля не менее интересна. Там находятся ниобий-титановые кабели со сверхпроводящими возможностями. Их длина составляет 7600 километров. Общий вес кабелей равен 1200 тонн. Внутренность кабеля — это сплетение 6300 проволок с общим расстоянием в 1,5 миллиарда километров. Такая длина равна 10 астрономическим единицам. Например, равняется 10 таким единицам.

Если говорить о его географическом местоположении, то можно сказать, что кольца коллайдера лежат меж городов Сен-Жени и Форнее-Вольтер, расположенными на французской стороне, а также Мейрин и Вессурат - со Швейцарской стороны. Маленькое кольцо, именуемое PS, проходит вдоль границы по диаметру.

Смысл существования

Для того чтобы ответить на вопрос «для чего нужен адронный коллайдер», нужно обратиться к учёным. Многие учёные говорят, что это самое великое изобретение за весь период существования науки, и то, что без него у науки, которая известна нам сегодня, просто нет смысла. Существование и запуск большого адронного коллайдера интересны тем, что при столкновении частиц в адронном коллайдере происходит взрыв. Все мельчайшие частицы разлетаются в разные стороны. Образовываются новые частицы, которые могут объяснить существование и смысл многого.

Первое, что учёные старались найти в этих разбившихся частицах — это теоретически предсказанную физиком Питером Хиггсом элементарную частицу, названную Это потрясающая частица является носителем информации, как считается. Ещё её принято называть «частицей Бога». Открытие ее приблизило бы учёных к пониманию вселенной. Нужно отметить, что в 2012 году, 4 июля, адронный коллайдер (запуск его частично удался) помог обнаружить похожую частицу. На сегодняшний день учёные пытаются изучить её подробнее.

Долго ли...

Конечно, сразу возникает вопрос, а почему учёные так долго изучают эти частицы. Если есть прибор, то можно запускать его, и каждый раз снимать все новые и новые данные. Дело в том, что работа адронного коллайдера — это дорогостоящее удовольствие. Один запуск обходится в большую сумму. Например, годовой расход энергии равняется 800 млн. кВт/ч. Такой объем энергии расходует город, в котором проживает около 100 тыс. человек, по средним меркам. И это не считая затрат на обслуживание. Ещё одна причина - это то, что у адронного коллайдера взрыв, который происходит при сталкивании протонов, связан с получением большого объёма данных: компьютеры считывают столько информации, что на обработку уходит большое количество времени. Даже несмотря на то что мощность компьютеров, которые получают информацию, велика даже по сегодняшним меркам.

Следующая причина — это не менее известная Учёные, работающие с коллайдером в этом направлении, уверены, что видимый спектр всей вселенной составляет всего 4%. Предполагается, что оставшиеся — это тёмная материя и тёмная энергия. Экспериментально пытаются доказать то, что эта теория верна.

Адронный коллайдер: за или против

Выдвинутая теория о тёмной материи поставила под сомнение безопасность существования адронного коллайдера. Возник вопрос: "Адронный коллайдер: за или против?" Он волновал многих учёных. Все великие умы мира разделились на две категории. «Противники» выдвинули интересную теорию о том, что если такая материя существует, то у неё должна быть противоположная ей частица. И при столкновении частиц в ускорителе возникает тёмная часть. Существовал риск того, что тёмная часть и часть, которую мы видим, столкнутся. Тогда это могло бы привести к гибели всей вселенной. Однако после первого запуска адронного коллайдера эта теория была частично разбита.

Далее по значимости идёт взрыв вселенной, вернее сказать - рождение. Считается, что при столкновении можно пронаблюдать то, как вселенная вела себя в первые секунды существования. То, как она выглядела после происхождения Большого взрыва. Считается, что процесс столкновения частиц очень схож с тем, который был в самом начале зарождения вселенной.

Ещё не менее фантастичная идея, которую проверяют учёные - это экзотические модели. Это кажется невероятным, но есть теория, которая предполагает, что существуют иные измерения и вселенные с похожими на нас людьми. И как ни странно, ускоритель и здесь сможет помочь.

Проще говоря, цель существования ускорителя в том, чтобы понять, что такое вселенная, как она была создана, доказать или опровергнуть все существующие теории о частицах и связанных с ними явлениях. Конечно, на это потребуются годы, но с каждым запуском появляются новые открытия, которые переворачивают мир науки.

Факты об ускорителе

Всем известно, что ускоритель разгоняет частицы до 99% скорости света, но не многие знают, что процент равен 99,9999991% от скорости света. Это потрясающая цифра имеет смысл благодаря идеальной конструкции и мощным магнитам ускорения. Также нужно отметить некоторые менее известные факты.

Приблизительно 100 млн. потоков с данными, которые приходят от каждого из двух основных детекторов, могут в считаные секунды заполнить больше 100 тысяч компакт-дисков. Всего за один месяц количество дисков бы достигло такой высоты, что если их сложить в стопу, то хватило бы до Луны. Поэтому было принято решение собирать не все данные, которые приходят с детекторов, а лишь те, которые разрешит использовать система сбора данных, которая по факту выступает как фильтр для полученных данных. Было решено записывать лишь 100 событий, которые возникли в момент взрыва. Записываться эти события будут в архив вычислительного центра системы Большого адронного коллайдера, который расположен в Европейской лаборатории по физике элементарных частиц, которая по совместительству является местом расположения ускорителя. Записываться будут не те события, которые были зафиксированы, а те, которые представляют для научного сообщества наибольший интерес.

Последующая обработка

После записи сотни килобайт данных будут обрабатывать. Для этого используется более двух тысяч компьютеров, расположенных, в ЦЕРН. Задача этих компьютеров заключается в обработке первичных данных и формировании из них базы, которая будет удобна для дальнейшего анализа. Далее сформированный поток данных будет направлен на вычислительную сеть GRID. Эта интернет-сеть объединяет тысячи компьютеров, которые располагаются в разных институтах по всему миру, связывает более сотни крупных центров, которые расположены на трёх континентах. Все такие центры соединены с ЦЕРН с использованием оптоволокна - для максимальной скорости передачи данных.

Говоря о фактах, нужно упомянуть также о физических показателях строения. Туннель ускорителя находится в отклонении на 1,4% от горизонтальной плоскости. Сделано это в первую очередь для того, чтобы поместить большую часть туннеля ускорителя в монолитную скалу. Таким образом, глубина размещения на противоположных сторонах разная. Если считать со стороны озера, которое находится недалеко от Женевы, то глубина будет равна 50 метрам. Противоположная часть имеет глубину 175 метров.

Интересно то, что лунные фазы влияют на ускоритель. Казалось бы, как такой отдалённый объект может воздействовать на таком расстоянии. Однако замечено, что во время полнолуния, когда происходит прилив, земля в районе Женевы, поднимается на целых 25 сантиметров. Это влияет на длину коллайдера. Протяжённость тем самым увеличивается на 1 миллиметр, а также изменяется энергия пучка на 0,02%. Поскольку контроль энергии пучка должен проходить вплоть до 0,002%, исследователи обязаны учитывать это явление.

Также интересно то, что туннель коллайдера имеет форму восьмиугольника, а не круга, как многие представляют. Углы образуются из-за коротких секций. В них располагаются установленные детекторы, а также система, которая управляет пучком ускоряющихся частиц.

Строение

Адронный коллайдер, запуск которого связан с использованием многих деталей и волнением учёных, - удивительное устройство. Весь ускоритель состоит из двух колец. Малое кольцо называется Протонный синхротрон или, если использовать аббревиатуры — PS. Большое кольцо - Протонный суперсинхротрон, или SPS. Совместно два кольца позволяют разогнать части до 99,9 % скорости света. При этом коллайдер повышает и энергию протонов, увеличивая их суммарную энергию в 16 раз. Также он позволяет сталкивать частицы между собой примерно 30 млн. раз/с. в течение 10 часов. От 4 основных детекторов получается по большей мере 100 терабайт цифровых данных в секунду. Получение данных обусловлено отдельными факторами. Например, они могут обнаружить элементарные частицы, которые имеют отрицательный электрический заряд, а также обладают половинным спином. Поскольку эти частицы являются неустойчивыми, то прямое их обнаружение невозможно, возможно обнаружить только их энергию, которая будет вылетать под определённым углом к оси пучка. Эта стадия называется первым уровнем запуска. За этой стадией следят более чем 100 специальных плат обработки данных, в которые встроены логические схемы реализации. Эта часть работы характерна тем, что в период получения данных происходит отбор более чем 100 тысяч блоков с данными в одну секунду. Затем эти данные будут использоваться для анализа, который происходит с использованием механизма более высокого уровня.

Системы следующего уровня, наоборот, принимают информацию от всех потоков детектора. Программное обеспечение детектора работает в сети. Там оно будет использовать большое количество компьютеров для обработки последующих блоков данных, среднее время между блоками - 10 микросекунд. Программы должны будут создавать отметки частиц, соответствуя изначальным точкам. В результате получится сформированный набор данных, состоящих из импульса, энергии, траектории и других, которые возникли при одном событии.

Части ускорителя

Весь ускоритель можно поделить на 5 основных частей:

1) Ускоритель электронно-позитронного коллайдера. Деталь, представляет собой около 7 тысяч магнитов со сверхпроводящими свойствами. С помощью них происходит направление пучка по кольцевому туннелю. А также они сосредотачивают пучок в один поток, ширина которого уменьшится до ширины одного волоса.

2) Компактный мюонный соленоид. Это детектор, предназначенный для общего назначения. В таком детекторе ведутся поиски новых явлений и, например, поиск частиц Хиггса.

3) Детектор LHCb. Значение этого устройства заключается в поиске кварков и противоположных им частиц - антикварков.

4) Тороидальная установка ATLAS. Этот детектор предназначен для фиксации мюонов.

5) Alice. Этот детектор захватывает столкновения ионов свинца и протон-протонные столкновения.

Проблемы при запуске адронного коллайдера

Несмотря на то что наличие высоких технологий исключает возможность ошибок, на практике все иначе. Во время сборки ускорителя происходили задержки, а также сбои. Нужно сказать, что неожиданной такая ситуация не была. Устройство содержит столько нюансов и требует такой точности, что учёные ожидали подобных результатов. Например, одна из проблем, которая встала перед учёными во время запуска - отказ магнита, который фокусировал пучки протонов непосредственно перед их столкновением. Эта серьёзная авария была вызвана разрушением части крепления вследствие потери сверхпроводимости магнитом.

Эта проблема возникла 2007 году. Из-за неё запуск коллайдера откладывали несколько раз, и только в июне запуск состоялся, спустя почти год коллайдер все же запустился.

Последний запуск коллайдера прошёл успешно, было собрано множество терабайт данных.

Адронный коллайдер, запуск которого состоялся 5 апреля 2015 года, успешно функционирует. В течение месяца пучки будут гонять по кольцу, постепенно увеличивая мощность. Цели для исследования как таковой нет. Будет повышена энергия столкновения пучков. Значение поднимут с 7 ТэВ до 13 ТэВ. Такое увеличение позволит увидеть новые возможности при столкновении частиц.

В 2013 и 2014 гг. проходили серьёзные технические осмотры туннелей, ускорителей, детекторов и другого оборудования. В результате было 18 биполярных магнитов со сверхпроводящей функцией. Нужно отметить, что общее количество их составляет 1232 штуки. Однако оставшиеся магниты не остались без внимания. В остальных заменили системы защиты от остывания, поставили улучшенные. Также улучшена охлаждающая система магнитов. Это позволяет им оставаться при низких температурах с максимальной мощностью.

Если все пройдёт успешно, то следующий запуск ускорителя пройдёт лишь через три года. Через этот период намечены плановые работы по улучшению, техническому осмотру коллайдера.

Нужно отметить, что ремонт обходится в копейку, не учитывая стоимость. Адронный коллайдер, по состоянию на 2010 год имеет цену, равную 7,5 млрд. евро. Эта цифра выводит весь проект на первое место в списке самых дорогих проектов в истории науки.

Самая крупная в истории человечества установка для физических экспериментов - Большой адронный коллайдер, расположенный 28-километровым подземным кольцом на территории Франции и Швейцарии, продолжает вызывать противоречивые толки. Одни ожидают от нее чудесных путешествий во времени, другие - открытие частицы Бога, недостающей в картине строения физического мира, третьи - страшных последствий имитации Большого взрыва, способных уничтожить нашу планету.

Трейлер дискуссии.


Скачать видео (11.75 МБ)

В чем суть проводящихся в коллайдере экспериментов и действительно ли они могут представлять опасность для всего человечества? Сопоставима ли значимость физического открытия с риском планетарного масштаба, пусть даже допустимым с незначительной вероятностью?

В дебат-шоу "Угол подозрения" проблему обсуждают директор Научно-учебного центра физики частиц и высоких энергий профессор БГУ и независимый исследователь, философ , автор теории "О новой теории происхождения Вселенной и опасности экстремальных экспериментов с материей" .

Полная версия дискуссии.

Внимание! У вас отключен JavaScript, ваш браузер не поддерживает HTML5, или установлена старая версия проигрывателя Adobe Flash Player.


Скачать аудио (25.84 МБ)

Внимание! У вас отключен JavaScript, ваш браузер не поддерживает HTML5, или установлена старая версия проигрывателя Adobe Flash Player.


Скачать видео


Николай Максимович, какие эксперименты стали возможны с появлением коллайдера?
Коллайдер - это микроскоп (это почти дословная аналогия). Микроскоп нужен, чтобы рассматривать то, что не видно невооруженным глазом. Ускоритель элементарных частиц нужен, чтобы с его помощью рассмотреть более мелкие детали в глубине материи, изучить их. До постройки Большого адронного коллайдера физики с помощью Тэватрона добрались до расстояния 10-18 м, то есть 10-16 см. Размеры атома - 10-10 м, атомного ядра - 10-15 см. То есть физики заглянули в материю на несколько порядков глубже. Большой адронный коллайдер позволил уйти еще дальше в глубину материи и узнать, как она устроена, какие новые частицы порождаются на таких расстояниях и временных промежутках, как ведет себя фундаментальное взаимодействие природы. Все это позволит увидеть какие-то новые явления.

Насколько я знаю, в экспериментах с коллайдером не просто наблюдается природа так, как она есть. Запускаются некие процессы, которые в природе не встречаются или которые сложно наблюдать, когда они происходят в естественном виде. Ведь эксперимент что-то производит с материей, а не просто ее наблюдает. Вы могли бы пояснить этот момент?
На основе проверенных общепринятых теорий, у которых нет ни одного сбоя, ни одного противоречащего факта, мы прогнозируем, какую информацию получим, проводя эти эксперименты. Конечно, могут быть и новые частицы, новые свойства взаимодействия. Но поскольку нет ни одного эксперимента, который противоречил бы теории относительности и квантовой теории поля, которая описывает фундаментальные взаимодействия, наши прогнозы должны оправдаться.

Но при этом общественное мнение с самого начала было взбудоражено. Некоторые физики выступали с заявлениями, что невозможно обеспечить полный контроль над работой коллайдера. То есть никто не может гарантировать полную безопасность. Это так?
Я не знаю таких физиков. Так говорят от недостатка информации.

Первым поднял этот вопрос американский физик Лорен Вагнер, который исследовал космические лучи, а также работал в службе радиационной безопасности. Также был украинский физик Иван Горелик, профессор химии Отто Ресслер, и можно еще найти много фамилий, которые обоснованно поднимают вопрос о непредсказуемости экспериментов.

Когда были первые пресс-конференции накануне запуска, ее организаторы выражали гордость, что впервые в истории науки проводятся эксперименты, которые в принципе непредсказуемы. Они говорили, что сделают открытия, о которых даже не подозревают, и преодолеют барьер, с которым столкнулась сегодня фундаментальная физика. Теоретическая физика находится в кризисе, и теория Большого взрыва - это одна из концепций, которая не дает ответа на многие вопросы и ведет в тупик.

Можете озвучить нерешенные вопросы теории Большого взрыва?
Если произошел Большой взрыв, и с него началась Вселенная, то как можно было в пустом состоянии получить беспричинность этого взрыва? Сам взрыв противоречит известным законам физики (такому базисному закону, как закон сохранения материи и энергии, закон термодинамики). Так произошла Вселенная: неизвестно откуда в пустом беспричинном месте.

Это звучит непрофессионально и абсолютно не имеет отношения к тому, что объясняет физическая теория и что мы сейчас наблюдаем. Мы не знаем до конца модели начала нашей Вселенной, ее фазы и того, что с ней будет дальше. Возможно, Вселенная пульсирует, сжалась в точку, а потом разжалась. Но нельзя представлять, что была пустота, в которой что-то возникло из ничего.

Физики откровенно говорят, что не знают причины, по которой произошел Большой взрыв, но однозначно нет конкурирующих теорий, которые были бы подтверждены наблюдательными фактами. Я имею в виду реликтовое излучение, закон Хаббла (расширение галактик), а сейчас еще и ускоренное расширение нашей Вселенной. Мы пришли к понятию темной материи и темной энергии, которая составляет 96% массы нашей Вселенной. Теория Большого взрыва - наиболее достоверная модель, и я не знаю других моделей, которые могли бы с такой степенью наблюдательной обоснованности конкурировать с ней.

Вначале она что-то объясняла, а когда начали разбираться, оказалось, что из этой теории вытекает всего 5% материи. Тогда совершенно бездоказательно ввели новые сущности - темную материю и темную энергию.

По второму закону Ньютона, ускорение невозможно без силы. Сила связана с энергией, значит, расширяться с ускорением Вселенная может за счет энергии. Эту энергию, которую мы видим, но о которой пока ничего не знаем, мы сопоставляем с параметром, которым можно определить ускорение. И мы говорим, что она составляет примерно 74% массы Вселенной. Еще 22% оценено как темная материя. Это неизвестные нейтральные (незаряженные) частицы. Одним из них может быть хиггсовский бозон, который будет открыт в результате экспериментов с коллайдером.

Есть другие теории, которые объясняют то, что не объясняет теория Большого взрыва. И они делают это, не вводя недоказуемых постулатов в виде темной материи.

Какая именно теория альтернативна теории Большого взрыва?
Есть два взгляда на происхождение Вселенной. По одной версии она произошла из мельчайшей точки в результате Большого взрыва. Этой теории даже нобелевские лауреаты дают нелестные оценки. По другой - материя во Вселенной возникла не от взрыва, а из вакуума. Эта теория решает все вопросы, причем в рамках всех законов физики, не привлекая дополнительных сущностей.

Люди вольны измышлять гипотезы, такова их природа. Нобелевские премии по физике, особенно последние десятилетия, были получены как раз за подтверждение теории Большого взрыва. Самый тяжелый вопрос в физике - "почему?". Сначала физики отвечают на вопросы "что?" и "как?", а вопросы "почему?" решаются потом.

Коллайдер может помочь ответить на вопрос "почему"?
Безусловно. Почему заряды электронов и протонов равны по модулю? Это загадка природы.

Чем опасен коллайдер на основании вашей теории?
Если мы исходим из того, что мир вышел из пустоты, которая рождает частицы, мы можем побудить процесс аннигиляции.

Это абсолютно ничем не обоснованные домыслы.

Были ли в работе коллайдера примеры, которые могли бы хоть как-то подтвердить эти домыслы? Возникли ли какие-то неуправляемые процессы?
Нет, конечно! В 2008 году директор ЦЕРНа уходил с поста и хотел, чтобы коллайдер был запущен еще при нем. Поэтому все немного поспешили, не проверили элементарные вещи - соединения проводов с резервуарами с жидким гелием. Когда начали поднимать напряжение и наращивать мощности, повысилась сила тока, и один контакт расплавился. Капли расплавленного металла прожгли дырку в резервуаре с жидким гелием, и, естественно, он рванул. Вот и все, что произошло. Через полтора года все было вычищено, и была обеспечена полная безопасность. Эта машина сейчас надежнее всех атомных электростанций и космических кораблей.

Из-за этого процессы не пошли в какое-то неуправляемое русло?
Взорвался резервуар с жидким гелием, ударная волна была 320 м, автоматически выдвинулись заслонки, и сработала система защиты.

Опасность коллайдера не в технических сбоях, а в непредсказуемости явления. Впервые выполнены экспериментальные установки, которые воздействуют на частицы материи на порядок выше, чем при взрыве термоядерной бомбы! Можно породить процесс, который вызовет аннигиляцию вещества планеты. Николай Максимович сказал, что коллайдер надежнее, чем атомная станция. Но на "Фукусиме" причина была в человеческом факторе: надо было учесть возможность цунами.

Были эксперименты по аннигиляции вещества? Производился ли этот процесс в маленьком, контролируемом масштабе?
Ускоритель Тэватрон в США - ускоритель протонов и антипротонов. Они сталкиваются и аннигилируют, потому что это частица и античастица.

Но при этом не происходит изменения материи вокруг, цепной реакции?
Нет, это обычная ядерная реакция столкновения элементарных частиц.

Недавно ЦЕРН объявил об открытии частицы, подобной бозону Хиггса, которая была предсказана Питером Хиггсом в 1964 году. Как это открытие может повлиять на состояние современной физической теории? Может ли работа с этой частицей быть рискованной?
Сразу отвечу на последний вопрос - нет, конечно. Это важно, потому что мы не знали, откуда берется масса. Основой теории, которая описывает фундаментальное взаимодействие частиц, является принцип симметрии. Сначала частицы получаются без массы, но в реальности они массивны. Поэтому была изобретена теория спонтанного нарушения симметрии равноправной и безмассовой частицы. Ученые возложили ответственность за возникновение массы на дополнительное скалярное поле и на частицу Хиггса как квант этого поля.

Предполагается, что это поле пронизывает всю Вселенную. Преодоление его изначально безмассовыми частицами придает им массу. Чем больше преодоление поля Хиггса, тем больше масса частиц. Происхождение самой массы остается необъяснимым: пока трудно понять, откуда она берется у самого бозона Хиггса. Открытие бозона - это факт громадной значимости, который позволит объяснить происхождение массы, основной характеристики всего сущего во Вселенной.

Полтора века назад известный австрийский физик и философ Эрнст Мах объяснил эффект массы яснее, чем ЦЕРН с бозоном и коллайдером. "Каждая частица имеет какое-то поле. Совокупность частиц образует тела, которые имеют какое-то поле. Совокупность тел, излучающих звезд, галактик тоже имеет свои электромагнитные, энергетические, гравитационные поля, которые образуют совокупное поле Вселенной. В нем каждая частица, которая имеет свое поле, взаимодействует с веществом Вселенной, тормозится, ускоряется".

Красивые слова без единой формулы и математического утверждения.

Неужели не смешнее сказать, что есть частица, которая отвечает за массу всего во Вселенной?

В основе всего сущего лежит считанное количество частиц. Фактически то, что нас окружает, это два кварка, электрон, электронное и ионное нейтрино. Бозоны заставляют взаимодействовать названные частицы. Все остальные частицы рождаются в экспериментах, столкновениях частиц, при столкновении космических лучей. Теория, которая объясняет такое простое устройства мира, это калибровочная теория фундаментальных взаимодействий. Но за эту красоту приходится платить тем, что все частицы получаются безмассовыми. Единственным математически обоснованным и физически подкрепленным объяснением является механизм спонтанного нарушения калибровочной симметрии, который приводит к существованию бозона Хиггса.

Слово "поле" не устраивает современную физику?
Любой частице соответствует поле, с помощью которого описывается взаимодействие частиц.

Вы ссылаетесь на новую сущность, которая введена бездоказательным постулированием. Кварки - это бездоказательная идея, она построена на чистой математической абстракции: если мы допустим дробные заряды, сложатся протоны и нейтроны.

Это установлено экспериментально многочисленными неопровержимыми фактами. Эффекты, которые вызваны кварками, ничем другим объяснить нельзя. Мы не можем зарегистрировать свободный кварк, видим только его след, струи вторичных частиц. Люди никак не могут с этим смириться, но такова реальность. Когда-то Эйнштейн не принимал квантовую механику, потому что говорил, что Бог не играет в кости. Но ведь от этого никто не отменил квантовую механику, и все поняли, что она не наглядна. Кто может представить, что частица - одновременно волна? Такие процессы никогда не будут наглядны, но это не значит, что их нет.

Но и не значит, что есть. Это недоказанное допущение.

Махово положение чем-то доказано?
У каждого есть разум, человек может анализировать и делать собственные выводы.

Здесь делается то же самое. Бозон Хиггса почему-то называют частицей Бога. Почему именно так?
Есть разные мнения. Нобелевский лауреат Леон Ледерман сказал, что бозон Хиггса - God particle. Но перевод оказался неточным. Мне кажется, что бозон образно можно назвать частицей Бога, потому что он отличается от всех других частиц тем, что очень слабо взаимодействует с другими частицами. Только благодаря рекордно высокой энергии, плотности пучков удалось обнаружить всего 8 событий с бозоном Хиггса. Статистика пока маленькая, но эксперименты будут продолжаться, и будут сотни и тысячи событий. Это исключительно редкое явление, которое обеспечивает массу всего сущего, поэтому образно ее можно назвать частицей Бога.

Какие ближайшие планы у экспериментаторов? Будут нарастать мощности или будут более детально исследоваться уже открытые частицы?
Это только начало, предстоит установить свойства этой частицы. Нужно установить - это бозон Хиггса стандартной модели или что-то другое? Будут говорить о новых явлениях, выходить за пределы стандартной модели. В марте 2013 года планируется остановка коллайдера, и в течение 1 года и 8 месяцев он будет модернизироваться. Коллайдер выйдет с энергией 14 ТэВ в системе центра и с повышенной светимостью - 1034. Потом остановка коллайдера планируется в 2018 году на полтора года, и будет в 2 раза повышена светимость. Если к тому времени инженеры решат кое-какие вопросы, то и в 5 раз. Планируется набор статистики, поиск новых и уточнение уже известных явлений, различных параметров, чтобы сделать стандартную модель более точной. Работа ускорителя и установок запланирована до 2030 года.

В воскресенье утром после двух лет модернизации специалисты Европейской организации ядерных исследований - CERN, вновь запустили Большой адронный коллайдер, мощнейший в мире ускоритель заряженных частиц, расположенный на границе Франции и Швейцарии. Обновление БАК, который стал вдвое продуктивнее, обошлось в $185 млн. Исследователи надеются, что коллайдер поможет раскрыть большинство секретов Вселенной, а также произвести множество интереснейших научных открытий.

Большой адронный коллайдер - почти 27-километровые замкнутые в круг тоннели, предназначенные для разгона элементарных частиц, остановили на модернизацию 14 февраля 2013 года. Как и любая сложная система, он перезапускался по частям: каждая зона детально тестировалась во избежание проблем в том ответственный момент, когда установка начнет функционировать как единое целое.

Рольф Хойер, генеральный директор CERN, рассказывает, что модернизация включала не только усовершенствование самого ускорителя, что позволит разгонять частицы до более высоких энергий, но и модернизацию оборудования для всех основных экспериментов: ALICE, CMS, ATLAS и LHCb, датчики которых обрели более высокую чувствительность и разрешающую способность. Помимо замены части оборудования системы управления на более современное, технический персонал произвел реконструкцию сигнальных, силовых кабелей, протонных синхотронов, элементов системы вентиляции туннеля ускорителя и других необходимых для работы компонентов.

Изначально предполагалось запустить полную систему БАК в конце марта 2015 года. Однако 21 марта было зафиксировано короткое замыкание в одном из магнитов. Потребовалось время для выяснения причин неполадки и ее устранения. Спустя 10 дней специалисты решили проблему: сразу сработал самый первый метод, который обеспечил максимально быстрый повторный перезапуск ускорителя. Глава одного из технических отделов CERN Пол Коллир рассказал, что после подключения источника напряжения к проблемным цепям, постороннюю металлическую частицу буквально испарили импульсом тока в 400 Ампер. Реакция была примерно такая, как при сгорании проволоки обычного предохранителя при коротком замыкании.
Сжигание металлической частицы электрическим током избавило инженеров CERN от необходимости нагрева электромагнита, который уже был охлажден до температуры в 1.9 градусов по шкале Кельвина, его ручного ремонта и последующего повторного охлаждения до нужной температуры. Если бы пришлось это делать, перезапуск отложили бы как минимум на месяц.

Начиная с воскресенья, состоялся рестарт Большого адронного коллайдера, который начал разгонять лучи протонов, не сталкивая их друг с другом, при сравнительно низком уровне энергии. При нормальном прохождении теста, элементарные частицы вновь начнут сталкивать примерно через месяц при энергии до 13 тераэлектронвольт, что вдвое больше мощностей коллайдера до реконструкции. Сейчас пучки запускаются без взаимодействия друг с другом, их столкновение на полной мощности планируется начать в начале июня.

Изначально БАК и был рассчитан на высокую мощность, но проблемы с магнитной системой и подводом энергии, которые возникли еще на этапе строительства ускорителя, привели к тому, что в 2008 году произошла авария, ставшая причиной задержки начала выполнения научных операций. Этот инцидент и несколько других проблем более мелкого масштаба вынудили CERN проявить осторожность и не позволить включения оборудования коллайдера на максимальную расчетную мощность.

При прошлом включения коллайдера физики нашли доказательства существования бозона Хиггса, частицы, существование которой теоретически предсказывала Cтандартная модель физики элементарных частиц. Уникальное оборудование БАК позволило сделать и другие важные научные открытия. В частности, эксперименты со столкновениями частиц позволили ученым обнаружить новую, неизвестную ранее форму материи, получившую название color-glass condensate. Она состоит из глюонов, элементарных частиц, скрепляющих воедино кварки протонов и нейтронов. Такое состояние материи формирует механизм квантовой запутанности, который можно использовать для осуществления квантовой телепортации и мгновенной передачи информации на большие расстояния. Исследования в этой области будут продолжаться. Безусловно, на новом энергетическом уровне БАК откроет новые горизонты для будущих открытий.

Более мощная установка, в частности, поможет ответить на вопросы по поводу Большого взрыва, в результате которого, как считается, появилась Вселенная почти 14 миллиардов лет назад. Один из вопросов, на которые предстоит найти ответ: куда делась антиматерия, созданная при Большом взрыве в равном объеме с материей. На БАК физики будут сталкивать два пучка протонов, чтобы воссоздать условия, сложившиеся в миллиардные доли секунды после Большого взрыва. Исследователи считают, что столкновение частиц в коллайдере может привести к созданию микроскопических черных дыр. Однако ученые заверяют, что они не будут представлять никакой опасности: если микродыры и появятся, то они тут же схлопнутся, а не станут засасывать страны и континенты, чего многие опасались при первом запуске коллайдера и боятся и поныне.

Команда БАК намерена впервые найти и так называемые суперсимметричные частицы, или глюин. Если они обнаружатся в коллайдере, это будет первым непосредственным доказательством существования темной материи, которая, как и бозон Хиггса, существует в теории, но никто не может подтвердить ее наличие на практике. Исследователи также собираются обнаружить следы суперсимметрии и дополнительных пространственных измерений. Параллельно будет изучаться явление гравитации, проводиться дополнительные измерения пространства-времени.

Ускоритель частиц будет также искать так называемые страпельки ("странные капельки") убийцы - killer-strangelet. Это особая форма материи, отличающаяся от той, которая нас окружает. Многие ученые полагают, что, слившись с обычной, эта странная материя способна превратить всю Землю в одну большую страпельку, комок странной материи. Хотя ученые CERN говорят, что при таких высоких температурах, которые производятся на коллайдере, соединить странную материю с обычной невозможно, неизвестность пугает и некоторые ученые выступают против подобных разработок. Так, после взрыва коллайдера в 2007 году знаменитый американский ученый с 30-летним стажем, подал в суд, требуя от CERN еще раз оценить все возможные риски проекта. В своем иске он утверждал: "Земля упадет в растущую микрочерную дыру, которая превратит Землю в черную дыру средних размеров, вокруг которой будут продолжать вращаться луна, спутники, МКС и т. п". Иск был отклонен, потому что ученый не смог доказать наличие "реальной угрозы". А еще потому, что за проектом, который создавался на протяжении 30 лет и обошелся в $6 млрд стоят, кроме CERN, Министерство энергетики США и не менее влиятельные научные организации.

ЦЕРН заканчивает подготовку к запуску , Долгое время считалось, что эксперимент с коллайдером небезопасен для человечества: он может вызвать появление чёрных дыр и «страпелек», которые разрушат всё сущее. В финальном отчёте по безопасности проекта утверждается, что коллайдер опасности не представляет. Тем не менее, не исключено, что просчитаны не все возможности гибели мира от действия этой машины.

Охлаждение обмоток сверхпроводящих электромагнитов Большого адронного коллайдера (LHC, Large Hadron Collider) в Европейском центре ядерных исследований (ЦЕРН) на границе Швейцарии и Франции подходит к завершению. Большинство из них уже достигли рабочей температуры всего на 2 градуса выше абсолютного нуля (–271o C), и учёные надеются начать разгон первых пучков частиц уже в следующем месяце. Если всё пойдёт так, как планируется, осенью встречные пучки протонов, движущихся со скоростью около 0,99999992 от скорости света, начнут сталкиваться. Число столкновений будет постепенно увеличиваться, приближаясь к запланированному уровню в миллиарды событий в секунду.

Радостное возбуждение учёных, погружённых в подготовку, наверное, крупнейшего научного эксперимента в истории человечества, можно понять. Однако у некоторых людей томление в ожидании старта LHC продолжает выливаться в уйму страхов вокруг истории о страшной чёрной дыре, которая возникнет в месте столкновения частиц и, быстро разрастаясь, через некоторое время пожрёт не только Женевский аэропорт и Юрские горы, но и всю нашу планету.

На самом деле это не самое страшное, что может случиться. Физики придумали ещё несколько эсхатологических сценариев, включающих превращение всех атомных ядер нашей планеты в так называемое странное вещество, разрушение протонов магнитными монополями и даже стремительное падение привычной нам структуры всей Вселенной при расширении созданного в ускорителе пузыря «истинного» вакуума.

Авторы «облегчённого» отчёта о безопасности – Группа оценки безопасности LHC: Джон Эллис, Джан Джудиче, Микеланджело Мангано, Игорь Ткачёв. В прошлую пятницу специальная рабочая группа, созданная для оценки реальности таких событий, представила «облегчённый» финальный отчёт, а в понедельник в архиве электронных препринтов появилась и полномасштабная работа, подробно рассматривающая опасность появления чёрных дыр.

Вывод учёных: бояться нечего. Земля и Вселенная, скорее всего, выстоят. Основной аргумент команды из пяти физиков в какой-то степени повторяет расхожую фразу «этого не может быть, потому что не может быть никогда». Только с точностью до наоборот: пророчества LHC-скептиков не могут сбыться, потому что все эксперименты, которые физики надеются провести в глубине детекторов ATLAS и CMS, происходят в природе постоянно, а вся программа LHC в наблюдаемой части Вселенной уже была повторена квадриллионы квадриллионов раз. И ничего, мы всё ещё существуем. Более того, никаких событий, которые можно было бы интерпретировать как свидетельство предполагаемых страшных последствий столкновений протонов, ни физики в своих лабораториях, ни астрономы, разглядывающие космические дали, пока не видели.

Дело в том, что гигантские по меркам земных ускорителей энергии сначала в 5 Тэв, а потом и в 7 Тэв (тераэлектронвольт), до которых планируется разгонять частицы в 27-километровом кольце громадного ускорителя, для вселенной не новость. На самом деле частицы такой и большей энергии каждую секунду врезаются в скафандр космонавта, вышедшего из космического корабля. С той же частотой они бы бомбардировали и наши тела, не будь у Земли атмосферы. Воздушная оболочка частично спасает нас от этих частиц, и зовутся они космическими лучами.

Поэтому, пока ускоритель не начал сталкивать протонные пучки, бояться совсем нечего: мы имеем дело лишь с ежесекундным опытом последователей Алексея Леонова, первого космонавта, вышедшего в открытый космос. Такие частицы при столкновении с мишенью выбивают из неё десятки и сотни протонов и разрушают несколько атомных ядер. Опыт 74-летнего Алексея Архиповича показывает, что ничего страшного ни для существования нашего мира, ни даже для человеческого здоровья в таких событиях нет.

Осенью, однако, сотрудники ЦЕРНа надеются начать сводить пучки заряженных частиц, движущихся в противоположных направлениях, и направлять их друг на друга. Это уже посерьёзнее. Хотя каждый из несущихся друг на друга протонов имеет энергию летающего под потолком комара, воссоздать происходящие при их взаимодействии процессы можно, лишь направив на стационарную мишень протон с энергией в десятки тысяч Тэв. Дело в том, что при использовании стационарной мишени основной запас энергии налетающих частиц уходит на сохранение импульса разлетающихся после удара осколков, а на их взаимодействие, которое для физиков интереснее всего, остаются лишь жалкие крохи.

Значения в тысячи Тэв вряд ли будут в обозримое время достигнуты на земных ускорителях, и именно поэтому такую популярность получили ускорители на встречных пучках. Тем не менее, в космосе и таких частиц хватает. Их гораздо меньше, чем «комаров», - примерно в 100 миллиардов раз, так что вряд ли кому-то из космонавтов удавалось испытать на себе такой удар. Но всю нашу планету потрясают несколько тысяч таких столкновений в секунду, а за время её существования их было примерно 1021 раз. За всё время работы женевского ускорителя в рамках эксперимента LHC планируется воссоздать примерно 1017-1018 ударов; так что безо всякого участия физиков этот эксперимент уже был повторен на Земле десятки тысяч раз.

Опасны ли стационарные объекты?

Кажется, что бояться и правда нечего. К таким выводам и пришли авторы нынешнего отчёта, подтвердив мнение своих коллег, представивших результаты независимого исследования на ту же тему в 2003 году. Однако на деле первое впечатление обманчиво. Между космическими лучами и столкновениями частиц во встречных пучках есть большая разница.

Во-первых, плотность событий в Швейцарии и Франции (детекторы находятся по обе стороны границы между двумя странами) несравнимо выше. Если среднее расстояние между подобными событиями, одновременно протекающими в земной атмосфере, составляет тысячи километров, то сечение сталкивающихся пучков измеряется сантиметрами. Более того, помимо протонов учёные будут сталкивать друг с другом и ядра свинца, в каждом из которых по две сотни протонов и нейтронов, упакованных с ядерной плотностью. И хотя в составе космических лучей наверняка также имеются тяжёлые ядра, их гораздо меньше, чем протонов и альфа-частиц.

Однако главная разница даже не в этом, она в скорости разлёта продуктов столкновения.

Если предположить, что в результате удара действительно образуются миниатюрные чёрные дыры или капельки смертоносной странной материи, они по закону сохранения импульса двинутся дальше с огромной скоростью, пролетая сквозь Землю в мгновение ока. Если подобные объекты возникнут в ускорителях, их скорость будет невелика: у встречных пучков практически одинаковые скорости, которые в сумме дают ноль. А значит, утверждают пессимисты, появившись однажды, чёрная дыра быстро провалится к центру нашей планеты, а там будет постепенно пожирать её тело, разрастаясь за счёт проглатывания всё новых и новых порций. В конце концов, дело дойдёт и до поверхности.

Именно поведению таких почти стационарных объектов и крайне малой вероятности их появления и посвящена большая часть последнего отчёта. Учёные один за одним подробно разбирают возможные сценарии «судного дня» с учётом даже самых спекулятивных вариантов физических теорий и последнего опыта работы на ускорителях и приходят к выводу, что нам всё-таки ничто не грозит.

Чёрные дыры не возникнут?

Что касается чёрных дыр, то их появление в LHC вообще под большим вопросом. Если верна общая теория относительности Эйнштейна (а серьёзных экспериментальных возражений на ее счёт пока нет), то чёрные дыры даже при столкновении ядер свинца образовываться не будут. Причина в том, что гравитация, управляющая движением грандиозных небесных тел и определяющая судьбу Вселенной в целом, на микроскопических расстояниях - очень слабая сила. Она на много порядков уступает другим трём фундаментальным силам - и электромагнитному, и двум ядерным взаимодействиям, так называемым слабому и сильному. А эти силы не предусматривают образования каких-либо чёрных дыр, да и вообще, «поженить» эти силы, описываемые квантовой теорией, с эйнштейновской теорией гравитации пока не особо получается.

Но, даже если чёрная дыра возникнет, она должна мгновенно исчезнуть за счёт квантовых эффектов. Одна из немногих успешных попыток разобраться в явлениях на стыке квантовой механики и гравитации, предпринятая знаменитым британским физиком-теоретиком Стивеном Хокингом, привела к появлению понятия «испарения» чёрных дыр. Виртуальные пары частиц и античастиц, в соответствии с квантовой механикой непрерывно возникающие в пространстве и через очень короткое время исчезающие в никуда, иногда должны образовываться и на границе чёрной дыры. В этом случае частицы пары не могут аннигилировать друг с другом, и для внешнего наблюдателя в окрестностях дыры из ничего «рождается» что-то; на это расходуется энергия, и как показывают расчёты, тем больше, чем меньше чёрная дыра.

Самая большая чёрная дыра, которая может родиться в LHC, имеет энергию не больше, чем суммарная энергия двух сталкивающихся ядер. Такой объект в соответствии с теорией Хокинга живёт умопомрачительно короткое время - меньше 10-80 сек., за которое он не то что проглотить какую-то иную частицу, он и сдвинуться с места не успеет.

Некоторые теории, впрочем, предсказывают существование в микромире так называемых скрытых пространственных измерений в добавление к трём известным нам - длине, ширине и высоте. В таких случаях не только гравитационные силы на очень малых расстояниях могут стать гораздо сильнее, чем предсказывается классической теорией тяготения, но и сами микроскопические чёрные дыры могут оказаться стабильными.

Тем не менее, и этот вариант не проходит.

Здесь учёные вновь обратили взгляд на космические объекты. Если бы стабильные чёрные дыры могли образовываться и расти, то при бомбардировке Земли или Солнца космическими лучами эти дыры очень быстро становились бы заряженными, притягивая в первую очередь протоны, а не электроны, которые при той же температуре движутся гораздо быстрее. Заряженная чёрная дыра в отличие от нейтральной гораздо активнее взаимодействует с окружающими частицами, которые её быстро и остановят.

Таким образом, пролетая через Солнце и уж тем более сверхплотные звёзды вроде белых карликов или нейтронных звёзд, чёрная дыра затормозится и останется в теле звезды. События, подобные тем, что планируется производить в LHC, в жизни каждой звезды происходили такое количество раз, что если бы чёрные дыры могли образовываться, то они достаточно быстро росли бы и уничтожали известные нам небесные тела.

Как именно происходит рост этих объектов, зависит от конкретной модели теории гравитации с «дополнительными измерениями». Последовательно разбирая многочисленные варианты и учитывая все мыслимые эффекты, учёные приходят к выводу, что даже при самых крайних предположения ни Земля, ни белые карлики не могли бы существовать дольше нескольких миллионов лет. На деле им миллиарды лет, так что микроскопические чёрные дыры, похоже, во Вселенной вовсе не образуются.

Степень опасности страпелек не исследована!

Другой популярный агент уничтожения нашего мира при запуске LHC - капельки странного вещества, или «страпельки», как проповедует калькировать с английского strangelet российский астроном Сергей Попов. Странным такое вещество называется не за особенности поведения, а из-за наличия в его составе значительной примеси так называемых странных кварков («аромата» s) в дополнение к верхнему и нижнему (u и d) кваркам, из которых состоят протоны и нейтроны, образующие ядра всех обычных атомов.

Небольшие странные ядра, в которых к нейтронам и протонам добавлена частица, содержащая странные кварки, в лабораториях уже были получены. Они не стабильны - распадались за миллиардные доли секунды. Получить ядра, в которых содержится много странных частиц, пока не получалось, однако из некоторых вариантов теории ядерных взаимодействий следует, что такие ядра могут быть стабильными. Они плотнее обычного вещества, и ими активно интересуются астрономы, занимающиеся нейтронными звёздами - своего рода гигантскими атомными ядрами, в которые после смерти превращаются массивные звёзды.

Если «странные» ядра действительно стабильны (никаких экспериментальных указаний на этот счёт нет), то, привлекая ещё и дополнительные, также экспериментально не подтверждённые соображения, можно показать, что переход в странную форму будет энергетически выгодным. В этом случае при взаимодействии с обычными ядрами странные будут провоцировать переход первых в странную форму. В итоге образуются капельки странного вещества, или «страпельки». Поскольку образуются они из протонов и нейтронов, заряд «страпелек» будет положительным, так что они будут отталкивать обычные ядра. Опять же в некоторых теориях могут возникать и отрицательные страпельки, которые не стабильны. Уже четвёртая в данном абзаце гипотеза предполагает наличие нестабильных, но долгоживущих отрицательных страпелек, которые обычное вещество будут притягивать.

Вот именно такие четырежды гипотетические страпельки и представляют угрозу.

С такими фантомами приходится работать учёным, доказывающим безопасность LHC.

Основные аргументы против существования вообще каких-либо страпелек - это результаты экспериментов на так называемом американском коллайдере релятивистских тяжёлых ионов (RHIC), который в конце XX века заработал в американской Брукхэвенской национальной лаборатории. В отличие от ЦЕРНа, где сталкиваться будут ядра свинца, в Брукхэвене сталкиваются ядра атомов чуть более лёгкого золота, при том с существенно меньшими энергиями.

Как показывают результаты RHIC, никакие страпельки здесь не появляются. Более того, собранные ускорителем данные отлично описывает теория, согласно которой в месте столкновения двух ядер на ничтожные доли секунды (порядка 10-23 сек.) образуется сгусток кварк-глюонной плазмы, имеющей температуру около полутора триллионов градусов. Такие температуры существовали лишь в самом начале нашей Вселенной, и даже в центрах самых массивных и горячих звёзд ничего подобного не возникает.

Но при таких температурах опасные страпельки, даже если и образуются, мгновенно разрушаются, поскольку для реакций с ними характерны те же энергии, что и для обычных ядер, в противном случае, они не были бы стабильным, то есть энергетически выгодным, состоянием. Характерная температура «плавления» ядер - миллиарды градусов, так что при температурах в триллион градусов никаких страпелек и в помине не остаётся.

Температура кварк-глюонной плазмы, которую планируют получить на LHC, ещё выше. Кроме того, плотность её при столкновении будет, как ни странно, ниже.

Так что получить страпельки в LHC ещё сложнее, чем в RHIC, а в нём их получить было сложнее, чем в ускорителях 1980-х и 1990-х годов.

Кстати, когда в 1999 году запускалась программа RHIC, её создателям также пришлось убеждать скептиков, что конца света с первым столкновением ядер не произойдёт. И не произошло.

Дополнительный аргумент против возможности появления страпелек - наличие Луны на орбите вокруг Земли. В отличие от нашей планеты Луна не имеет атмосферы, так что её поверхность и ядра тяжёлых элементов, которые она содержит, напрямую бомбардируются ядрами, входящими в состав космических лучей. Если бы появление страпелек было возможным, то за 4 миллиарда лет существования нашего спутника эти опасные ядра полностью «переварили» бы Луну, превратив в странный объект. Однако Луна продолжает светить по ночам как ни в чём не бывало, а некоторым даже повезло погулять по этому объекту и вернуться назад.

Другой способ убить Вселенную

Более экзотические кандидаты на роль убийц всего живого - магнитные монополи. Никому ещё не удавалось, разрезав магнит на две части, получить отдельные северный и южный его полюса, но магнитный монополь - это именно такая частица. Опять же, никаких экспериментальных указаний на его существование нет, однако ещё в первой половине XX века Вольфганг Паули заметил, что их введение в теорию позволяет объяснить, почему все заряды кратны электронному.

Идея эта оказалась настолько заманчивой, что, несмотря на отсутствие каких-либо доказательств, некоторые физики продолжают верить в существование монополей. Если учесть, что для квантования заряда достаточно одного монополя на всю Вселенную, то эта вера вряд ли хуже веры в единое начало, благодаря которому во Вселенной есть добро.

Однако магнитный монополь - это не добро, по крайней мере для протона. Имея большой заряд, монополи по своему ионизирующему действию должны быть похожи на тяжёлые атомные ядра, и в некоторых вариантах теории - опять же не в почти священной для физиков стандартной модели, которая пока оказывалась в состоянии объяснить все эксперименты с частицами, - монополи могут вызывать распад протонов и нейтронов на более лёгкие частицы.

Большинство физиков полагают, что магнитные монополи должны быть очень массивными частицами с энергией порядка 1012 Тэв, до которых ни LHC, ни какому бы то ни было другому земному ускорителю, не дотянуться. Так что и бояться их нечего.

Тем не менее, если предположить, что монополи могут иметь меньшую массу, тогда они также давно должны были образовываться при взаимодействии земного вещества с космическими лучами. При том, активнейшим образом взаимодействуя с веществом через электромагнитные силы, монополи должны очень быстро тормозиться и оставаться на Земле. Бомбардировка нашей планеты и других небесных тел космическими лучами продолжается миллиарды лет, и исчезнуть Земля никуда не исчезла. Так что либо лёгкие монополи не образуются, либо не имеют свойства даже как-то способствовать распаду протона.

Вселенная перейдёт в состояние истинного вакуума?

Наконец, самое страшное, что может случиться, - это появление в пространстве пузырьков «истинного вакуума». Они способны уничтожить не просто Землю, но и всю известную нам Вселенную.

Вообще говоря, физический вакуум - сложнейшая система из множества взаимодействующих полей. В квантовой механике вакуум - это просто энергетически самое низкое состояние такой системы, а не какой-то «абсолютный ноль». У каждого кубометра вакуума вполне может быть своя энергия, и более того, сам вакуум может даже влиять на происходящие в нём физические явления.

Например, если у нас некоторый ложный, очень стабильный, но всё-таки не самый низкий уровень энергии, с него ещё можно шагнуть вниз, а разницу в энергии между двумя уровнями использоваться для создания новых частиц, как создаются кванты света при переходе электронов с высокого атомного уровня на низкий. Астрофизики, например, уверены, что такие переходы случались в прошлом, и благодаря им наш мир сейчас заполнен веществом.

Вообще говоря, ни откуда не следует, что вакуум, который мы знаем, не такой вот ложный. Более того, простейшее объяснение загадочной «тёмной энергии», из-за которой ускоряется расширение нашей Вселенной, - это именно наличие ненулевой энергии вакуума. В таком случае переход на очередную ступень возможен, и более того, согласно некоторым теориям, последние астрономические наблюдения даже увеличили его вероятность.

Ниоткуда, конечно, не следует и то, что спровоцировать такой переход могут столкновения протонов в суперколлайдере LHC. Однако, если микроскопические пузырьки «истинного» вакуума всё-таки образуются, дальше теория предсказывает их стремительное расширение за счёт превращения вакуума из одного вида в другой вдоль границы пузырька. Расширяясь со скоростью света, такой пузырёк за доли секунды объемлет Землю, а затем примется за остальную Вселенную, породив множество частиц и, возможно, сделав существование привычной нам материи невозможным.

Вообще говоря, как именно LHC может спровоцировать вакуумный переход, неясно. За неимением предмета опровержения в данном случае авторы отчёта вновь обращают свой взор на небо, повторяя всё ту же логику. Если мы до сих пор не видим каких-то катастрофических последствия столкновения заряженных высокоэнергичных частиц в космосе, значит, появление таких пузырей или невозможно, или слишком маловероятно. В конце концов, как подсчитали учёные, Вселенная за время своего существования провела 1031 опытов размаха LHC в наблюдаемой нами её части. И, если бы хоть один из них окончился разрушением какой-то части мира, мы бы это наверняка заметили. А что такое один эксперимент против 1031? Вероятность, что не повезёт именно нам, слишком мала.

Оправдан ли риск?

Конечно, разговор о вероятности здесь вряд ли уместен. Когда речь идёт о цене автомобильной страховки, можно разделить общее число аварий на общее число машин, получив вероятность аварии для каждой машины, и умножить эту вероятность на среднюю стоимость автомобиля. Такая величина называется математическим ожиданием ущерба для машины. Добавьте к этой сумме сборы, на которые существуют страховые компании - и стоимость страховки готова.

Профессионалы оперируют и математическим ожиданием количества людских смертей - например, в сейсмоопасных районах. Кому-то это может показаться циничным, но такой расчёт - наверное, единственный способ эффективно распорядиться всегда ограниченными ресурсами для спасения максимального числа жизней.

Если вероятность разрушения Земли при старте LHC, скажем, один шанс на миллиард, то математическое ожидание числа смертей - произведение населения планеты на одну миллиардную - составит 6,5. Не исключено, что среди нескольких тысяч учёных, работающих в ЦЕРНе, найдутся не семь, а гораздо больше человек, готовых ради науки пожертвовать своими жизнями. Однако могут ли они поставить на карту, пусть и почти гарантированно выигрышную, существование всего человечества? А если речь идёт о существовании всей Вселенной? Вряд ли кто-то может дать ответ на этот вопрос.

Житель американского штата Гавайи Вальтер Вагнер, например, считает риск неоправданными и даже подал соответствующий иск в один из американских судов. Иск, впрочем, уже отклонён, а какова будет его дальнейшая судьба в судебной системе США, пока никто не знает. Ясно лишь, что вряд ли он будет удовлетворён к середине осени, когда, согласно плану, встречные пучки в гигантском тоннеле под Женевой начнут разгоняться навстречу друг другу. Да и американский суд над европейской Женевой юрисдикции не имеет и может лишь запретить поставку важного оборудования для ЦЕРНа, которое производится в США; на это, кстати, и направлен иск.

Страх, предваряющий пуск LHC, не новость. То же самое имело место и при запуске ускорителя ионов в Брукхэвене. А в конце шестидесятых годов весь мир облетело сообщение об открытии советским химиком Николаем Федякиным «полимерной формы воды». На Западе только и было разговоров о том, что, попав в мировой океан, «поливода» быстро переведёт в полимерную форму всё его содержимое. Чем не история о страпельках, способных превратить всё вещество в странную форму? Желающие могут вспомнить и другую легенду - о подводных испытаниях водородной бомбы, взрыв которой лишь едва-едва не зацепил богатые тяжёлым изотопом водорода донные слои океана, вызвав их детонацию по всей планете.

Получается, что потенциальные опасности, связанные с запуском коллайдера , не следует принимать во внимание. Гораздо более вероятна гибель Земли от удара астероида, вспышки сверхновой по соседству. Даже война за минеральные ресурсы нанесёт ущерб значительно больший, нежели запуск машины. Таким образом, предложения остановить эксперименты с LHC вряд ли будут признаны конструктивными.

Самый крупный и мощный ускоритель частиц в мире - Большой адронный коллайдер (БАК) - на днях вернулся к работе. После модернизации ускоритель частиц заработал с удвоенной мощностью. Значит ли это, что все страхи, связанные с его первоначальным запуском, возродились в удвоенном количестве?

Хотя этого события ждали по всему миру, есть два человека, которые хранили молчание: Уолтер Вагнер, офицер ядерной безопасности на пенсии, и испанский журналист Луис Санчо. У них есть своя история, связанная с БАК, и, возможно, именно им мы обязаны за все страшилки, связанные с запуском расщепляющей протоны машины.

Еще за несколько месяцев до того, как коллайдер должны были включить впервые в 2008 году, Вагнер и Санчо подали иск против организаций, стоящих за монструозной машиной: Министерство энергетики США, Национальная ускорительная лаборатория Ферми и Национальный научный фонд.

Будет лишним сказать, что потребовалось много мужества и, возможно, немного безумия, чтобы попытаться засудить любую из этих организаций, на которые работают ярчайшие интеллектуалы человечества, не говоря уж о том, чтобы напасть сразу на всех. Особенно после того, как они закончили строительство 30-летнего проекта стоимостью в 6 миллиардов долларов. В защиту мужчин, Вагнер и Санчо пытались спасти мир от неминуемого, как им казалось, уничтожения.

Среди опасений было и то, что БАК может породить миниатюрную черную дыру, которая буквально поглотит Землю. В своем иске они утверждали:

«В конце концов, вся Земля упадет в растущую микрочерную дыру, которая превратит Землю в черную дыру средних размеров, вокруг которой будут продолжать вращаться луна, спутники, МКС и т. п».

Иск был отклонен, потому что мужчины не смогли доказать наличие «реальной угрозы». Впрочем, на Земле и по сей день остаются люди, которые уверены, что БАК приведет человечество к краху. Хотя Санчо и Вагнер ошиблись - Земля на месте, БАК работает несколько лет подряд - важно понять, почему научная подоплека работы БАК не подразумевает никаких угроз. Понять, почему Большой адронный коллайдер не принесет такого уж катастрофического вреда.

Рождение черной дыры

Черные дыры - чрезвычайно плотные компактные объекты с массой от 4 до 170 миллионов раз превышающей солнечную. Хотя черные дыры по определению огромны, вполне возможно хотя бы в теории, что небольшое количество материи - десятки микрограммов - могут быть упакованы достаточно плотно, чтобы создать черную дыру. Это и будет примером микроскопической черной дыры.

До сих пор никто не наблюдал и не производил микроскопических черных дыр - даже БАК. Но прежде чем он был включен в первый раз в 2008 году, Вагнер и Санчо опасались, что разгон субатомных частиц до 99,99% скорости света и последующее их столкновение могут создать настолько плотное месиво частиц, что появится черная дыра.

Физики CERN сообщают, что общая теория относительности Эйнштейна предполагает, что на БАК невозможно произвести такое экзотическое явление. Но что, если Эйнштейн ошибался? Этого опасаются Вагнер и Санчо.

Даже если так, другая теория, разработанная известным астрофизиком Стивеном Хокингом, предсказывает, что даже если микроскопическая черная дыра образуется внутри БАК, она мгновенно распадется, не представляя никакой угрозы для существования Земли.

В 1974 году Хокинг предсказал, что черные дыры не просто пожирают материю, но и выплевывают ее в виде чрезвычайно высокоэнергетического излучения Хокинга. Согласно теории, чем меньше черная дыра, тем больше излучения Хокинга она выдает в космос, постепенно сходя на нет. Таким образом, микроскопическая черная дыра, став наименьшей, исчезнет, прежде чем сможет нанести ущерб и уничтожить нас. Возможно, по этой причине мы и не видели микроскопических черных дыр.

Рождение странной материи

Странная материя состоит из отдельных гипотетических частиц - страпелек, - которые отличаются от обычной материи, составляющей все, что есть вокруг нас.

Вагнер и Санчо опасаются, что эта странная материя может сливаться с обычной и «может превратить всю Землю в одну большую страпельку». Конечно, опасения Вагнера и Санчо не строятся на их теориях - эти мысли обсуждались в более серьезных научных кругах.

Тем не менее точное поведение странной материи или даже одной страпельки никто не знает; отчасти поэтому страпельки остаются кандидатами на частицы темной материи, которая преобладает в нашей Вселенной.

Для поддержки этой теории физики из Брукхейвенской национальной лаборатории в Нью-Йорке пытаются создать страпельку в Релятивистском коллайдере тяжелых ионов с начала этого века. Пока ни одной страпельки не видели. Но шансы, конечно, всегда есть.

Если Брукхейвенской национальной лаборатории повезет в поисках, остаются опасения, что страпельки, контактируя с обычной материей, начинают цепную реакцию, которая превратит вас, нас и все остальное на Земле в комок странной материи. Сможем ли мы пережить такую трансформацию и что изменится - можно только догадываться. Но неизвестность пугает.

Физики CERN, однако, утверждают, что если Брукхейвену удастся создать страпельку, шансы на то, что она будет взаимодействовать с обычной материей, весьма невелики:

«При таких высоких температурах, которые производятся на коллайдерах, слепить странную материю вместе сложнее, чем образовать лед в горячей воде», - говорят они.

Рождение магнитных монополей

В природе магниты обладают двумя концами - северным и южным полюсом. Но в конце 19 века физик Пьер Кюри, муж Марии Кюри, предположил, что нет никаких причин того, почему частица с одним магнитным полюсом не может существовать.

Спустя более полувека такая частица под названием магнитный монополь никогда не создавалась в природе и не наблюдалась в природе. То есть она сугубо гипотетическая. Но это не помешало Вагнеру предположить, что мощная машина вроде БАК может создать первый в истории магнитный монополь, который может уничтожить Землю.

«У таких частиц может быть способность катализировать распад протонов и атомов, заставляя их превращаться в другие типы материи», - писали он и Санчо.

Теория того, что монополь может уничтожать протоны - субатомные строительные блоки всей материи во Вселенной - спекулятивная в лучшем случае, объясняют физики CERN. Но допустим, эта теория верна. В таком случае эта частица будет обладать массой, которая слишком велика, чтобы БАК мог создать такую частицу.

В общем, мы в безопасности.

«Факт существования Земли и других небесных тел исключает возможность создания опасных пожирающих протоны магнитных монополей с помощью БАК», - говорит физики CERN.

Следующие несколько месяцев физики проведут наращивая мощность БАК, чтобы она превысила в два раза предельную мощность, с которой БАК работал во время первого запуска. Это не отменяет тот факт, что Земля едва ли будет уничтожена микроскопическими черными дырами, страпельками или магнитными монополями.