Функция распределения непрерывной случайной величины есть первообразная. Случайной величины

Случайной величиной называется переменная, которая может принимать те или иные значения в зависимости от различных обстоятельств, и случайная величина называется непрерывной , если она может принимать любое значение из какого-либо ограниченного или неограниченного интервала. Для непрерывной случайной величины невозможно указать все возможные значения, поэтому обозначают интервалы этих значений, которые связаны с определёнными вероятностями.

Примерами непрерывных случайных величин могут служить: диаметр детали, обтачиваемой до заданного размера, рост человека, дальность полёта снаряда и др.

Так как для непрерывных случайных величин функция F (x ), в отличие от дискретных случайных величин , нигде не имеет скачков, то вероятность любого отдельного значения непрерывной случайной величины равна нулю.

Это значит, что для непрерывной случайной величины бессмысленно говорить о распределении вероятностей между её значениями: каждое из них имеет нулевую вероятность. Однако в некотором смысле среди значений непрерывной случайной величины есть "более и менее вероятные". Например, вряд ли у кого-либо возникнет сомнение, что значение случайной величины - роста наугад встреченного человека - 170 см - более вероятно, чем 220 см, хотя и одно, и другое значение могут встретиться на практике.

Функция распределения непрерывной случайной величины и плотность вероятности

В качестве закона распределения, имеющего смысл только для непрерывных случайных величин, вводится понятие плотности распределения или плотности вероятности. Подойдём к нему путём сравнения смысла функции распределения для непрерывной случайной величины и для дискретной случайной величины.

Итак, функцией распределения случайной величины (как дискретной, так и непрерывной) или интегральной функцией называется функция , которая определяет вероятность, что значение случайной величины X меньше или равно граничному значению х .

Для дискретной случайной величины в точках её значений x 1 , x 2 , ..., x i ,... сосредоточены массы вероятностей p 1 , p 2 , ..., p i ,... , причём сумма всех масс равна 1. Перенесём эту интерпретацию на случай непрерывной случайной величины. Представим себе, что масса, равная 1, не сосредоточена в отдельных точках, а непрерывно "размазана" по оси абсцисс Оx с какой-то неравномерной плотностью. Вероятность попадания случайной величины на любой участок Δx будет интерпретироваться как масса, приходящаяся на этот участок, а средняя плотность на этом участке - как отношение массы к длине. Только что мы ввели важное понятие теории вероятностей: плотность распределения.

Плотностью вероятности f (x ) непрерывной случайной величины называется производная её функции распределения:

.

Зная функцию плотности, можно найти вероятность того, что значение непрерывной случайной величины принадлежит закрытому интервалу [a ; b ]:

вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала [a ; b ], равна определённому интегралу от её плотности вероятности в пределах от a до b :

.

При этом общая формула функции F (x ) распределения вероятностей непрерывной случайной величины, которой можно пользоваться, если известна функция плотности f (x ) :

.

График плотности вероятности непрерывной случайной величины называется её кривой распределения (рис. ниже).

Площадь фигуры (на рисунке заштрихована), ограниченной кривой, прямыми, проведёнными из точек a и b перпендикулярно оси абсцисс, и осью Ох , графически отображает вероятность того, что значение непрерывной случайной величины Х находится в пределах от a до b .

Свойства функции плотности вероятности непрерывной случайной величины

1. Вероятность того, что случайная величина примет какое-либо значение из интервала (и площадь фигуры, которую ограничивают график функции f (x ) и ось Ох ) равна единице:

2. Функция плотности вероятности не может принимать отрицательные значения:

а за пределами существования распределения её значение равно нулю

Плотность распределения f (x ), как и функция распределения F (x ), является одной из форм закона распределения, но в отличие от функции распределения, она не универсальна: плотность распределения существует только для непрерывных случайных величин.

Упомянем о двух важнейших в практике видах распределения непрерывной случайной величины.

Если функция плотности распределения f (x ) непрерывной случайной величины в некотором конечном интервале [a ; b ] принимает постоянное значение C , а за пределами интервала принимает значение, равное нулю, то такое распределение называется равномерным .

Если график функции плотности распределения симметричен относительно центра, средние значения сосредоточены вблизи центра, а при отдалении от центра собираются более отличающиеся от средних (график функции напоминает разрез колокола), то такое распределение называется нормальным .

Пример 1. Известна функция распределения вероятностей непрерывной случайной величины:

Найти функцию f (x ) плотности вероятности непрерывной случайной величины. Построить графики обеих функций. Найти вероятность того, что непрерывная случайная величина примет какое-либо значение в интервале от 4 до 8: .

Решение. Функцию плотности вероятности получаем, находя производную функции распределения вероятностей:

График функции F (x ) - парабола:

График функции f (x ) - прямая:

Найдём вероятность того, что непрерывная случайная величина примет какое либо значение в интервале от 4 до 8:

Пример 2. Функция плотности вероятности непрерывной случайной величины дана в виде:

Вычислить коэффициент C . Найти функцию F (x ) распределения вероятностей непрерывной случайной величины. Построить графики обеих функций. Найти вероятность того, что непрерывная случайная величина примет какое-либо значение в интервале от 0 до 5: .

Решение. Коэффициент C найдём, пользуясь свойством 1 функции плотности вероятности:

Таким образом, функция плотности вероятности непрерывной случайной величины:

Интегрируя, найдём функцию F (x ) распределения вероятностей. Если x < 0 , то F (x ) = 0 . Если 0 < x < 10 , то

.

x > 10 , то F (x ) = 1 .

Таким образом, полная запись функции распределения вероятностей:

График функции f (x ) :

График функции F (x ) :

Найдём вероятность того, что непрерывная случайная величина примет какое либо значение в интервале от 0 до 5:

Пример 3. Плотность вероятности непрерывной случайной величины X задана равенством , при этом . Найти коэффициент А , вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала ]0, 5[, функцию распределения непрерывной случайной величины X .

Решение. По условию приходим к равенству

Следовательно, , откуда . Итак,

.

Теперь находим вероятность того, что непрерывная случайная величина X примет какое-либо значение из интервала ]0, 5[:

Теперь получим функцию распределения данной случайной величины:

Пример 4. Найти плотность вероятности непрерывной случайной величины X , которая принимает только неотрицательные значения, а её функция распределения .

Задание 1 . Плотность распределения непрерывной случайной величины Х имеет вид:
Найти:
а) параметр A ;
б) функцию распределения F(x) ;
в) вероятность попадания случайной величины X в интервал ;
г) математическое ожидание MX и дисперсию DX .
Построить график функций f(x) и F(x) .

Задание 2 . Найти дисперсию случайной величины X , заданной интегральной функцией.

Задание 3 . Найти математическое ожидание случайной величины Х заданной функцией распределения.

Задание 4 . Плотность вероятности некоторой случайной величины задана следующим образом: f(x) = A/x 4 (x = 1; +∞)
Найти коэффициент A , функцию распределения F(x) , математическое ожидание и дисперсию, а также вероятность того, что случайная величина примет значение в интервале . Построить графики f(x) и F(x) .

Задача . Функция распределения некоторой непрерывной случайной величины задана следующим образом:

Определить параметры a и b , найти выражение для плотности вероятности f(x) , математическое ожидание и дисперсию, а также вероятность того, что случайная величина примет значение в интервале . Построить графики f(x) и F(x).

Найдем функцию плотности распределения, как производную от функции распределения.
F′=f(x)=a
Зная, что найдем параметр a:

или 3a=1, откуда a = 1/3
Параметр b найдем из следующих свойств:
F(4) = a*4 + b = 1
1/3*4 + b = 1 откуда b = -1/3
Следовательно, функция распределения имеет вид: F(x) = (x-1)/3

Математическое ожидание .


Дисперсия .

1 / 9 4 3 - (1 / 9 1 3) - (5 / 2) 2 = 3 / 4
Найдем вероятность того, что случайная величина примет значение в интервале
P(2 < x< 3) = F(3) – F(2) = (1/3*3 - 1/3) - (1/3*2 - 1/3) = 1/3

Пример №1 . Задана плотность распределения вероятностей f(x) непрерывной случайной величины X . Требуется:

  1. Определить коэффициент A .
  2. найти функцию распределения F(x) .
  3. схематично построить графики F(x) и f(x) .
  4. найти математическое ожидание и дисперсию X .
  5. найти вероятность того, что X примет значение из интервала (2;3).
f(x) = A*sqrt(x), 1 ≤ x ≤ 4.
Решение :

Случайная величина Х задана плотностью распределения f(x):


Найдем параметр A из условия:



или
14/3*A-1 = 0
Откуда,
A = 3 / 14


Функцию распределения можно найти по формуле.

Проверим, выполняется ли требование равномерной ограниченности дисперсии. Напишем закон распределения :

Найдём математическое ожидание
:

Найдём дисперсию
:

Эта функция возрастает, следовательно, чтобы вычислить константу, ограничивающую дисперсию, можно вычислить предел:

Таким образом, дисперсии заданных случайных величин неограниченны, что и требовалось доказать.

Б) Из формулировки теоремы Чебышева следует, что требование равномерной ограниченности дисперсий является достаточным, но не необходимым условием, поэтому нельзя утверждать, что к данной последовательности эту теорему применить нельзя.

Последовательность независимых случайных величин Х 1 , Х 2 , …, Х n , … задана законом распределения

D(X n)=M(X n 2)- 2 ,

учитывай, что M(X n)=0, найдем (выкладки предоставляются выполнить читателю)

Временно предположим, что n изменяется непрерывно (чтобы подчеркнуть это допущение, обозначим n через х), и исследуем на экстремум функцию φ(х)=х 2 /2 х-1 .

Приравняв первую производную этой функции к нулю, найдем критические точки х 1 =0 и х 2 =ln 2.

Отбросим первую точку как не представляющую интереса (n не принимает значения, равного нулю); легко видеть, что в точек х 2 =2/ln 2 функция φ(х) имеет максимум. Учитывая, что 2/ln 2 ≈ 2.9 и что N – целое положительное число, вычислим дисперсию D(X n)= (n 2 /2 n -1)α 2 для ближайших к числу 2.9 (слева и справа) целых чисел, т.е. для n=2 и n=3.

При n=2 дисперсия D(X 2)=2α 2 , при n=3 дисперсия D(Х 3)=9/4α 2 . Очевидно,

(9/4)α 2 > 2α 2 .

Таким образом, наибольшая возможная дисперсия равна (9/4)α 2 , т.е. дисперсии случайных величин Хn равномерно ограничены числом (9/4)α 2 .

Последовательность независимых случайных величин X 1 , X 2 , …, X n , … задана законом распределения

Применима ли к заданной последовательности теорема Чебышева?

Замечание. Поскольку случайные величины Х, одинаково распределены и независимы, то читатель, знакомый с теоремой Хинчина, может ограничиться вычислением лишь математического ожидания и убедиться, что оно кончено.

Поскольку случайные величины Х n независимы, то они подавно и попарно независимы, т.е. первое требование теоремы Чебышева выполняется.

Легко найти, что M(X n)=0, т.е.первое требование конечности математических ожиданий выполняется.

Остается проверить выполнимость требования равномерной ограниченности дисперсий. По формуле

D(X n)=M(X n 2)- 2 ,

учитывай, что M(X n)=0, найдем

Таким образом, наибольшая возможная дисперсия равна 2, т.е. дисперсии случайных величин Х n равномерно ограничены числом 2.

Итак, все требования теоремы Чебышева выполняются, следовательно, к рассматриваемой последовательности эта теорема применима.

Найти вероятность того, что в результате испытания величина Х примет значение, заключенное в интервале (0, 1/3).

Случайная величина Х задана на всей оси Ох функцией распределена F(x)=1/2+(arctg x)/π. Найти вероятность того, что в результате испытания величина Х примет значение, заключенное в интервале (0, 1).

Вероятность того, что Х примет значение, заключенное в интервале (a, b), равна приращению функции распределения на этом интервале: P(a

Р(0< Х <1) = F(1)-F(0) = x =1 - x =0 = 1/4

Случайная величина Х функцией распределения

Найти вероятность того, что в результате испытания величина Х примет значение, заключенное в интервале (-1, 1).

Вероятность того, что Х примет значение, заключенное в интервале (a, b), равна приращению функции распределения на этом интервале: P(a

Р(-1< Х <1) = F(1)-F(-1) = x =-1 – x =1 = 1/3.

Функция распределения непрерывной случайной величины Х (времени безотказной работы некоторого устройства) равна F(х)=1-е -х/ T (х≥0). Найти вероятность безотказной работы устройства за время х≥Т.

Вероятность того, что Х примет значение, заключенное в интервале x≥T, равна приращению функции распределения на этом интервале: P(0

P(x≥T) = 1 - P(T

Случайная величина Х задана функцией распределения

Найти вероятность того, что в результате испытания Х примет значение: а) меньшее 0.2; б) меньшее трех; в) не меньшее трех; г) не меньшее пяти.

а) Так как при х≤2 функция F(х)=0, то F(0, 2)=0, т.е. P(х < 0, 2)=0;

б) Р(Х < 3) = F(3) = x =3 = 1.5-1 = 0.5;

в) события Х≥3 и Х<3 противоположны, поэтому Р(Х≥3)+Р(Х<3)=1. Отсюда, учитывая, что Р(Х<3)=0.5 [см. п. б.], получим Р(Х≥3) = 1-0.5 = 0.5;

г) сумма вероятностей противоположных событий равна единице, поэтому Р(Х≥5)+Р(Х<5)=1. Отсюда, используя условие, в силу которого при х>4 функция F(x)=1, получим Р(Х≥5) = 1-Р(Х<5) = 1-F(5) = 1-1 = 0.

Случайная величина Х задана функцией распределния

Найти вероятность того, что в результате четырех независимых испытаний величина Х ровно три раза примет значение, принадлежащее интервалу (0.25, 0.75).

Вероятность того, что Х примет значение, заключенное в интервале (a, b), равна приращению функции распределения на этом интервале: P(a

P(0.25< X <0.75) = F(0.75)-F(0.25) = 0.5

Следовательно, , или Отсюда , или.

Случайная величина X задана на всей оси Ox функцией распределения . Найти возможное значения , удовлетворяющее условию: с вероятностью случайная X в результате испытания примет значение большее

Решение. События и - противоложные, поэтому . Следовательно, . Так как , то .

По определению функции распределения, .

Следовательно, , или . Отсюда , или.

Дискретная случайная величина X задана законом распределения

Итак, искомая функция распределения имеет вид

Дискретная случайная величина X задана законом распределения

Найти функцию распределения и начертить ее график.

Дана функция распределения непрерывной случайной величины X

Найти плотность распределения f(x).

Плотность распределения равна первой производной от функции распределения:

При x=0 производная не существует.

Непрерывная случайная величина X задана плотностью распределения в интервале ; вне этого интервала . Найти вероятность того, что X примет значение, принадлежащее интервалу .

Воспользуемся формулой . По условию ,и . Следовательно, искомая вероятность

Непрерывная случайная величина X задана плотностью распределения в интервале ; вне этого интервала . Найти вероятность того, что X примет значение, принадлежащее интервалу .

Воспользуемся формулой . По условию ,и . Следовательно, искомая вероятность

Плотность распределения непрерывной случайной величины Х в интервале (-π/2, π/2) равна f(x)=(2/π)*cos2x ; вне этого интервала f(x)=0. Найти вероятность того, что в трех независимых испытаниях Х примет ровно два раза значение, заключенное в интервале (0, π/4).

Воспользуемся формулой Р(a

Р(0

Ответ: π+24π.

fx=0, при x≤0cosx, при 0

Используем формулу

Если х ≤0, то f(x)=0, следовательно,

F(x)=-∞00dx=0.

Если 0

F(x)=-∞00dx+0xcosxdx=sinx.

Если x≥ π2 , то

F(x)=-∞00dx+0π2cosxdx+π2x0dx=sinx|0π2=1.

Итак, искомая функция распределения

Fx=0, при x≤0sinx, при 0 π2.

Задана плотность распределения непрерывной случайной величины Х:

Fx=0, при x≤0sinx, при 0 π2.

Найти функцию распределения F(x).

Используем формулу

Плотность распределения непрерывной случайной величины Х задана на всей оси Ох равеством . Найти постоянный параметр С.

.

. (*)

.

Таким образом,

Плотность распределения непрерывной случайной величины задана на всей оси равенством Найти постоянный параметр С.

Решение. Плотность распределения должна удовлетворять условию . Потребуем, чтобы это условие выполнялось для заданной функции:

.

. (*)

Найдем сначала неопределенный интеграл:

.

Затем вычислим несобственный интеграл:

Таким образом,

Подставив (**) в (*), окончательно получим .

Плотность распределения непрерывной случайной величины X в интервале равна ; вне этого интервала f(х) = 0. Найти постоянный параметр С.

.

. (*)

Найдем сначала неопределенный интеграл:

Затем вычислим несобственный интеграл:

(**)

Подставив (**) в (*), окончательно получим .

Плотность распределения непрерывной случайной величины Х задана в интервале равенством ; вне этого интервала f(х) = 0. Найти постоянный параметр С.

Решение. Плотность распределения должна удовлетворять условию , но так как f(x) вне интервала равна 0 достаточно, чтобы она удовлетворяла: Потребуем, чтобы это условие выполнялось для заданной функции:

.

. (*)

Найдем сначала неопределенный интеграл:

Затем вычислим несобственный интеграл:

(**)

Подставив (**) в (*), окончательно получим .

Случайная величина X задана плотностью распределения ƒ(x) = 2x в интервале (0,1); вне этого интервала ƒ(x) = 0. Найти математическое ожидание величины X.

Решение. Используем формулу

Подставив a = 0, b = 1, ƒ(x) = 2x, получим

Ответ: 2/3.

Случайная величина X задана плотностью распределения ƒ(x) = (1/2)x в интервале (0;2); вне этого интервала ƒ(x) = 0. Найти математическое ожидание величины X.

Решение. Используем формулу

Подставив a = 0, b = 2, ƒ(x) = (1/2)x, получим

М (Х) = = 4/3

Ответ: 4/3.

Случайная величина X в интервале (–с, с) задана плотностью распределения

ƒ(x) = ; вне этого интервала ƒ(x) = 0. Найти математическое ожидание величины X.

Решение. Используем формулу

Подставив a = –с, b = c, ƒ(x) = , получим

Учитывая, что подынтегральная функция нечетная и пределы интегрирования симметричны относительно начала координат, заключаем, что интеграл равен нулю. Следовательно, М(Х) = 0.

Этот результат можно получить сразу, если принять во внимание, что кривая распределения симметрична относительно прямой х = 0.

Случайная величина Х в интервале (2, 4) задана плотностью распределения f(x)=

. Отсюда видно, что при х=3 плотность распределения достигает максимума; следовательно, . Кривая распределения симметрична относительно прямой х=3, поэтому и .

Случайная величина Х в интервале (3, 5) задана плотностью распределения f(x)=; вне этого интервала f(x)=0. Найти моду, математическое ожидание и медиану величины Х.

Решение. Представим плотность распределения в виде . Отсюда видно, что при х=3 плотность распределения достигает максимума; следовательно, . Кривая распределения симметрична относительно прямой х=4, поэтому и .

Случайная величина Х в интервале (-1, 1) задана плотностью распределения ; вне этого интервала f(x)=0. Найти: а) моду; б) медиану Х.

Функцией распределения случайной величины X называется функция F(x), выражающая для каждого х вероятность того, что случайная величина X примет значение , меньшее х

Пример 2.5. Дан ряд распределения случайной величины

Найти и изобразить графически ее функцию распределения. Решение. В соответствии с определением

F(jc) = 0 при х х

F(x) = 0,4 + 0,1 = 0,5 при 4 F{x) = 0,5 + 0,5 = 1 при х > 5.

Итак (см. рис. 2.1):


Свойства функции распределения:

1. Функция распределения случайной величины есть неотрицательная функция, заключенная между нулем и единицей:

2. Функция распределения случайной величины есть неубывающая функция на всей числовой оси, т.е. при х 2

3. На минус бесконечности функция распределения равна нулю, на плюс бесконечности - равна единице, т.е.

4. Вероятность попадания случайной величины X в интервал равна определенному интегралу от ее плотности вероятности в пределах от а до b (см. рис. 2.2), т.е.


Рис. 2.2

3. Функция распределения непрерывной случайной величины (см. рис. 2.3) может быть выражена через плотность вероятности по формуле:

F(x)= Jp (*)*. (2.10)

4. Несобственный интеграл в бесконечных пределах от плотности вероятности непрерывной случайной величины равен единице:

Геометрически свойства / и 4 плотности вероятности означают, что ее график - кривая распределения - лежит не ниже оси абсцисс , и полная площадь фигуры , ограниченной кривой распределения и осью абсцисс , равна единице.

Для непрерывной случайной величины X математическое ожидание М(Х) и дисперсия D(X) определяются по формулам:

(если интеграл абсолютно сходится); или

(если приведенные интегралы сходятся).

Наряду с отмеченными выше числовыми характеристиками для описания случайной величины используется понятие квантилей и процентных точек.

Квантилем уровня q (или q-квантилем) называется такое значение x q случайной величины , при котором функция ее распределения принимает значение , равное q, т. е.

  • 100q%-ou точкой называется квантиль X~ q .
  • ? Пример 2.8.

По данным примера 2.6 найти квантиль xqj и 30%-ную точку случайной величины X.

Решение. По определению (2.16) F(xo t3)= 0,3, т. е.

~Y~ = 0,3, откуда квантиль х 0 3 = 0,6. 30%-ная точка случайной величины X , или квантиль Х)_о,з = xoj » находится аналогично из уравнения ^ = 0,7 . откуда *,= 1,4. ?

Среди числовых характеристик случайной величины выделяют начальные v* и центральные р* моменты к-го порядка , определяемые для дискретных и непрерывных случайных величин по формулам:


Непрерывные случайные величины - это величины, возможные значения которых образуют некоторый конечный или бесконечный интервал.

Интегральная функция распределения есть закон распределения случайной величины, с помощью которого можно задавать как дискретную, так и непрерывную случайную величину.

Интегральной функцией распределения называют функцию F(x), определяющую для каждого значения x вероятность того, что случайная величина X примет значение меньшее х, т.е. .

Геометрически это означает: F(x) есть вероятность того, что случайная величина Х примет значение, которое изображается на числовой оси точкой, лежащей левее точки х.

Случайная величина называется непрерывной, если ее интегральная функция F(X) непрерывно дифференцируема.

Свойства интегральной функции.

1 0 . Значения интегральной функции принадлежат отрезку от 0 до1, то есть .

2 0 . Интегральная функция есть функция неубывающая, то есть, если , то .

Следствия:

1. Вероятность того, что СВ примет значение, заключенное в интервале (а;в) равна приращению интегральной функции на этом интервале:

2. Вероятность того, что НСВ примет одно конкретное значение равна 0.

3. Если возможные значения НСВ расположены на всей числовой прямой, то справедливы следующие предельные отношения:

и

График интегральной функции.

График интегральной функции строят, исходя из ее свойств. По первому свойству , график расположен между прямыми y=0 и y=1. из второго свойства следует, что - функция возрастающая, а значит ее график на промежутке (а,в) поднимается вправо и вверх. По 3 0 свойству при , а при (рис.5).

Рисунок 5. График интегральной функции.

Пример 31. ДСВ задана законом распределения

0,2 0,5 0,3

Найти интегральную функцию распределения и построить ее график.

1. Если , то по 3 0 .

2. Если , .

3. Если , .

4. Если , то по 3 0 .

Построим график интегральной функции ДСВ(Ч) (рис.6).

Рисунок 6. График интегральной функции для дискретной случайной величины.

Дифференциальная функция распределения НСВ.

Существует еще один способ задания НСВ, используя дифференциальную функцию распределения.

Дифференциальной функцией распределения называется функция равная первой производной интегральной функции, то есть .

Дифференциальную функцию распределения по-другому называют плотностью распределения вероятностей.

Теорема 17. Вероятность того, что НСВ Х примет значение, принадлежащее промежутку (а,в), равна определенному интегралу от дифференциальной функции, взятому в пределах от а до в.

Пример 32. НСВ задана интегральной функцией распределения

Найти дифференциальную функцию распределения и вероятность попадания НСВ в промежуток .

Решение.

Свойства дифференциальной функции распределения.

1 0 . Дифференциальная функция есть функция неотрицательная: .

2 0 . (Условие нормировки.) Несобственный интеграл от дифференциальной функции в пределах от -∞ до +∞ равен 1, то есть:

В частности, если все возможные значения НСВ принадлежат интервалу (а, в), то

Пример 33.

Найти значение параметра а.

Заметим, что зная дифференциальную функцию распределения, можно найти интегральную функцию по формуле:

.

Пример 34. НСВ задана дифференциальной функцией распределения:

найти интегральную функцию распределения.

Решение.

1.

3.

Числовые характеристики НСВ.